Register No:		Name:	
	SAIN	TGITS COLLEGE OF ENGINEERING (AUTONOMOUS)	
(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)			
	EIGH	TH SEMESTER B.TECH DEGREE EXAMINATION(R), MAY 2024	
		Robotics and Automation	
		(2020 SCHEME)	
Course Code	:	20RBT442	
Course Name	:	Robot Motion Planning	

400B2

Max. Marks :

PART A

(Answer all questions. Each question carries 3 marks)

- Differentiate between a configuration space and a workspace. 1.
- List the classes of algorithms that need to be considered while implementing robot motion planning. 2.
- Differentiate between polygonal space GVD and grid-based GVD. 3.
- List the limitations of the visibility graph. 4.

100

- Examine the advantages of advanced path planning techniques over conventional approaches. 5.
- List the advantages of using Query sampling path planners. 6.
- Evaluate the application of the bug algorithm. 7.
- Explain the term assembly planning. 8.
- List the properties of configuration space of an articulated robot. 9.
- List the decomposition techniques in approximate cell decomposition. 10.

PART B

(Answer one full question from each module, each question carries 14 marks) **MODULE I**

11.	a. Differentiate the motion planning approaches for a fixed manipulator and a wheeled mobile robot.	7
	b. Consider the case study of the rover "Pragyan" in Chandrayan Mission. Examine the motion planning strategies involved in its design.	7
	OR	
12.	(a) Illustrate the principle of bijective mapping and examine its difference with injective mapping.(b) Define the term homeomorphism.	10 4
	MODULE II	
13.	(a) Outline the steps involved in constructing a sensor-based GVD.(b) Construct a Voronoi diagram considering the point obstacles at (2,1) and (8,6) in a two-dimensional space.	9 5

OR

(a) Illustrate the types of roadmaps with the help of an example. 14. 8 (b) Examine the properties that need to be satisfied for a union of the one-dimensional curve to be 6

Total pages: 2

Duration:3 Hours

defined as a roadmap.

MODULE III

15.	(a) Differentiate between probabilistic roadmap and normal roadmaps.(b) Explain the principle of Dijkstra algorithm.	10 4
	OR	
16.	(a) Outline the steps involved in constructing the Rapidly Exploring Random Trees algorithm.(b) List the advantages of the probabilistic roadmap approach.	10 4
	MODULE IV	
17.	(a) Outline the construction of the bubble band technique.(b) Differentiate between bubble band technique and curvature velocity techniques.	8 6
	OR	
18.	(a) Outline the construction of the D* algorithm with the help of a neat diagram.(b) Differentiate between A* and D* algorithms.	8 6
	MODULE V	
19.	(a) Differentiate between the process of motion planning in a simple configuration space and composite configuration space.	8
	(b) Examine the challenges involved in multiple robot motion planning.	6
	OR	
20.	(a) Examine the porcess of exact cell decomposition in robot motion planning.(b) List the significance of motion planning in dynamic configuration space.	10 4
