| Register No: |        |                       | Name:                                               |
|--------------|--------|-----------------------|-----------------------------------------------------|
| S            | SAINT  | GITS COLLE            | GE OF ENGINEERING (AUTONOMOUS)                      |
|              | (AFFII | LIATED TO APJ ABDUL K | CALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) |
| SECON        | D SEN  | IESTER INTEGI         | RATED MCA DEGREE EXAMINATION(R,S), MAY 2024         |
|              |        |                       | Integrated MCA                                      |
|              |        |                       | (2020 SCHEME)                                       |
| Course Code  | :      | 20IMCAT104            |                                                     |
| Course Name  | :      | Introduction t        | to Discrete Mathematics                             |
| Max. Marks   | :      | 60                    | Duration:3 Hours                                    |

## PART A

#### (Answer all questions. Each question carries 3 marks)

- 1. Using truth table check whether the argument is valid or not,  $p, p \rightarrow q \implies p$ .
- 2. Construct a truth table for  $(p \lor q) \to (p \land q)$ .
- 3. Among 100 people, how many of them have birthday in same month.
- 4. Use mathematical induction to prove  $2^n < n!$  for all positive integers n with  $n \ge 4$ .
- 5. Find the least common multiple of a) 2<sup>3</sup>.5<sup>5</sup>.7<sup>2</sup>, 2<sup>4</sup>.3<sup>2</sup> b) 2<sup>2</sup>.3<sup>3</sup>.5<sup>5</sup>, 2<sup>5</sup>.3<sup>3</sup>.5<sup>2</sup>.
- 6. What are the quotient and remainder whena) 101 is divided by 11b) 19 is divided by 7.
- 7. State the necessary and sufficient condition for Euler path and Euler circuit.
- 8. State Ores theorem.
- 9. Define m-ary tree and full m-ary tree with example.
- 10. Define minimum spanning tree.

#### PART B

## (Answer one full question from each module, each question carries 6 marks) MODULE I

11. Show that  $(p \lor q) \land (p \lor r)$  is neither tautology nor contradiction.

6

12. Translate each of the statements into propositions using predicates, quantifiers and logical 6 operators.

OR

 $\hat{P(x)}$ : x is perfect

C(x): x is your friend Domain : all people

a) None is perfect

b) Not everyone is perfect

c) At least one of your friend is perfect

- d) Everyone is your friend and is perfect
- e) Not everyone is your friend or someone is not perfect.

#### **MODULE II**

13. Use mathematical induction to prove the sum of finite number of terms of a geometric 6 progression  $a + ar + ar^2 + \ldots + ar^n = \frac{ar^{n+1}-a}{r-1}, n \ge 0, n \in \mathbb{Z}.$ 

14. Use mathematical induction to prove the generalisation of one of De- morgan's law for 6 sets,  $\overline{(A_1 \cap A_2 \cap \ldots \cap A_n)} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_n}$ .

# MODULE III

15. Using Euclidean algorithm find the gcd(360, 294) and also find the integers x and y 6 such that gcd(360, 294) = 360x + 294y.

16. Find the solution of  $3x \equiv 4 \pmod{7}$ .

MODULE IV

17. Determine whether the given pair of graphs is isomorphic



18. Find the degree sequence of each of the following graphs.
a) K<sub>4</sub>
b) C<sub>4</sub>
c) W<sub>4</sub>
d) K<sub>2,3</sub>
e) Q<sub>3</sub>

## MODULE V

19. Use Prim's algorithm to find a minimum spanning tree for the given weighted graph. 6



20.



Answer these questions about the rooted tree illustrated

- (i) Which vertex is the root?
- (ii) Which vertices are internal?
- (iii) Which vertices are leaves?
- (iv) Which vertices are children of j?
- (v) Which vertex is the parent of h?
- (vi) Which vertices are siblings of o?
- (vii) Which vertices are ancestors of m?
- (viii) Which vertices are descendants of b?

\*\*\*\*\*

6

6



