Name:

Duration: 3 Hours

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER INTEGRATED MCA DEGREE EXAMINATION (S), FEBRUARY 2024

(2020 SCHEME)

Course Code: 20IMCAT103

Course Name: **Basic Mathematics** 60

Max. Marks:

Use of non-programmable calculators can be permitted.

PART A

(Answer all questions. Each question carries 3 marks)

- Express the set O of odd positive integers less than 10 in the set builder 1. notation?
- What do the statements $\forall x \in \mathcal{R}$ such that $x^2 \ge 0$ and $\exists x \in Z$ such that 2. $x^2 = 1$ mean?
- Define a Partially ordered set? 3.
- Give an example of a relation on a set that is neither symmetric nor 4. antisymmetric?
- 5. What are the two conditions for a rule to be a function.
- 6. Give an example for a function to be one -one but not onto.
- Find $\frac{dy}{dx}$ if $y = \frac{x^3}{2} + 1$ 7.
- 8. Give a geometrical meaning of Differentiability
- Evaluate $\int x^2 e^x dx$. 9.
- Show that the value of $\int_0^1 \sqrt{1 + \cos x} dx$ cannot possibly be 2. 10.

PART B

(Answer one full question from each module, each question carries 6 marks) **MODULE I**

11.	a)	What is the power set of an empty set.	(2)
-----	----	--	-----

State and prove De Morgan's Law. b)

(4)

OR

12. There are 2504 computer science students at a school. Of these,1876 have taken a course in pascal,999 have taken a course in Fortran and 345 have taken a course in C. Further, 876 have taken courses in both (6) pascal and Fortran ,231 have taken courses in both Fortran and C and 290 have taken courses in both pascal and C. if 189 of these students have taken courses in Fortran, pascal and C, how many of these 2504

Β

(2)

students have not taken a course in any of these three programming languages?

MODULE II

- 13. a) List the ordered pairs in the relation R from A = $\{0,1,2,3,4\}$ to B = $\{0,1,2,3\}$, where $(a,b) \in R$ if gcd(a,b) = 1. (3) [Hint: gcd = greatest common divisor]
 - b) Represent the relation $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,4), (4,3)\}$ on $\{1,2,3,4\}$ with a matrix and digraph. (3)

OR

14. Let R be the relation on the set of integers such that *aRb if and only if* a = b or a = -b. Show that *R* is an equivalence relation (6)

MODULE III

- 15 (a) Let f_1 and f_2 be functions from R to R such that $f_1(x) = x^2$ and $f_2(x) = x x^2$. What are the functions $f_1 + f_2$ and $f_1 f_2$? (2)
 - (b) Let f: N → N defined by f(n) = 3n, n ∈ N.Express the function diagrammatically. Also write domain, range and codomain of the (4) function.

OR

16. Let $f: Z \to Z$ such that f(x) = x + 1. Is f an invertible function? If so, find its inverse? (6)

MODULE IV

- 17. a) Find the derivative of $y = \sqrt{x^2 + 1}$
 - b) Find an equation for the tangent to the curve $y = x + \frac{2}{x}$ at the point (1,3).

OR

- 18. a) Find y^{n} if $y = \frac{1}{3x-2}$ (3)
 - b) Use implicit differentiation to find $\frac{dy}{dx}$ if $x^2y + xy^2 = 6$. (3)

MODULE V

19. a) Evaluate $\int (x^2 + 2x - 3)^2 (x + 1) dx$ (3) b) Find the area of the region between the curve $y = 4 - x^2, 0 \le x \le 3$ and the x-axis. (3)

OR

- 20. a) State the fundamental theorem of Calculus (2)
 - b) Use a substitution to find an antiderivative and then apply the Fundamental Theorem to evaluate the integral $\int_0^1 t\sqrt{t^2 + 1}dt$ (4)
