Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER INTEGRATED MCA DEGREE EXAMINATION (S), FEBRUARY 2024

(2020 SCHEME)

Course Code: 20IMCAT209

Course Name: Data Structures

Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define the term ADT with an example.
- 2. How is performance analysis done for an algorithm?
- 3. Explain the method for determining an element's address in an array with an example.
- 4. Describe any two popular searching methods in data structure with an example.
- 5. Write down short notes on:
 - i) Circular linked list.
 - ii) Doubly linked list.
- 6. What are the differences between an array and a linked list?
- 7. What is a circular queue? Give an example.
- 8. Describe the algorithm for evaluating postfix expression.
- 9. Explain the concept of binary tree with suitable diagram.
- 10. What do you mean by AVL tree?

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

11. Explain the asymptotic notations used while analyzing an algorithm. (6)

OR

- 12. Differentiate
 - i) Linear and non-linear data structures. (6)
 - ii) Static and dynamic data structure implementations

MODULE II

13. Explain any two sorting techniques with algorithm and example. (6)

OR

129B3

14.	a)	5 1 5	(3)
	b)	With a suitable example write down the methods for calculating address of a two-dimensional array.	(3)
MODULE III			
15.	'	What is a linked list?	(2)
	b)	Write algorithms to	
		i)Delete an element. ii) Count the number of elements in a singly linked list.	(4)
OR			
16.		Write an algorithm for inserting elements in a circular linked list	
		i) At the beginning.	(6)
		ii)At the end.	(-)
		iii)At a specified position.	
MODULE IV			
17.	De	scribe static and dynamic implementation of stack.	(6)
OR			
18.	Wr	ite down the algorithm for converting Infix expression into Postfix	(6)
	exp	pression with an example.	(0)
MODULE V			
19.	W	rite short note on	(-)
		i. BFS	(6)
		ii. DFS	
OR			
20.		th an example, describe the inorder, preorder, and postorder traversal	(6)
	op	erations on a binary tree.	()

E