A 468B3 Total Pages: **3**

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER B.TECH DEGREE EXAMINATION (S), FEBRUARAY 2024 COMPUTER SCIENCE AND ENGINEERING (2020 SCHEME)

Course Code: 20CST301

Course Name: Formal Languages and Automata Theory

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Describe the formal definitions of DFA and NFA.
- 2. Define ε closure. Find ε closure for all the states in the given diagram

- 3. Describe the regular language generated by regular expression (0+1)*001(0+1)*
- 4. Write regular expression for (i) String of a's and b's of even length. (ii) Set of strings consisting of even number of a's followed by odd number of b's
- 5. Construct Derivation Tree for the following grammar with respect to the string aaabbabba.

S→aB | bA

A→aS| bAA|a

B→ bS | aBB | b

- 6. State the Applications of Myhill-Nerode Theorem.
- 7. Prove that CFLs are closed under Union.
- Construct the PDA from the CFG

 $S \rightarrow asa$

 $S \rightarrow bsb$

 $S \to \epsilon$

- 9. List types of Turing Machines.
- 10. Differentiate recursive languages and recursively enumerable languages.

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

- 11. a) Design a DFA that accepts odd number of 0's and odd number of 1's over the alphabet {0,1}*. Test whether the string 001011 is accepted by the above DFA. Show the entire sequence of states traversed.
 - b) Design Finite automata for an identifier. Write regular expression corresponding to identifier. (4)

OR

12. a) Construct NFA for (0 + 1)*(00 + 11)(0 + 1)* and Convert to DFA. (14)

MODULE II

13. a) Convert the given Finite Automata to Regular Expression

OR

- 14. a) Using Pumping lemma test prove that the language L={aⁿ | n is a prime number} is not regular. (7)
 - b) Minimize the following DFA.

	0	1	
->A	В	С	
В	A	D	(7)
*C	E	F	
*D	E	F	
*E	E	F	
F	F	F	

MODULE III

15. a) Provide proof of correctness for the following context free grammar.

$$G=(\{X\},\{a,b\},P,X)$$
 (14)

P:

X→XaXaXbX|XaXbXaX|XbXaXaX|ε

OR

16. a) What is an ambiguous grammar? Prove that the Grammar G = ({S}, {a.b}, S,S →aSb | bSa | SS | ∈} is ambiguous.
b) Define Chomsky's normal form? Convert following grammar G into CNF where G = ({S,A,B,D}, {a,b,d}, P,S})

P: $S \rightarrow aAD$ (8)

 $A \rightarrow aB \mid bAB$

 $B \rightarrow b$

 $D \rightarrow d$

MODULE IV

17. a) Construct a Context Free Grammar from the Push Down Automata

Where A= ({ q0, q1 }, {a,b} , [z0,z], δ , q0, z0, \emptyset }

$$\delta: \delta (q0, b, z0) = (q0, zz0)$$

$$\delta (q0, b, z) = (q0, zz)$$

$$\delta (q1, b, z) = (q1, \epsilon)$$

$$\delta (q0, \epsilon, z0) = (q0, \epsilon)$$

$$\delta (q0, a, z) = (q1, z)$$

$$\delta (q1, a, z0) = (q0, z0)$$
(7)

(4)

(8)

b) Prove L = { $a^i b^i c^i | i \ge 1$ } is not context free language using Pumping Lemma. (7)

OR

- 18. a) Design a PDA where $L=\{a^nb^n \mid n>=1\}U\{a^nb^{2n} \mid n>=1\}$ (10)
 - b) Differentiate PDA and NPDA

MODULE V

- 19. a) Construct a Turing Machine to accept the language L= { ww^R | w ϵ (10)
 - b) Write a context sensitive grammar for the language $L = \{a^nb^nc^n \mid n \ge 0\}$. (4)

OR

- 20. a) Prove that halting problem is undecidable (6)
 - b) Explain the Chomsky Hierarchy with a neat diagram.
