398B2

Register No.:

..... Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER INTEGRATED MCA DEGREE EXAMINATION (S), FEBRUARY 2024

(2020 SCHEME)

Course Code: 20IMCAT309

60

Course Name: Introduction to Operations Research

Max. Marks:

Duration: 3 Hours

Non-programmable calculators may be permitted

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define Linear programming problem.
- 2. Differentiate slack and surplus variables.
- 3. Explain Big-M method.
- 4. What do you mean by dual of a Linear programming problem? Give an example.
- 5. Discuss degeneracy in transportation problem.
- 6. Define unbalanced assignment problem and prohibited assignment problem.
- 7. State Maximin principle and minimax principle.
- 8. Define the term saddle point with an example.
- 9. What are the basic characteristics of a queuing system?
- 10. Explain queue discipline.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

11. Using graphical method solve the following LPP Maximize $Z=5x_1 + 3x_2$ Subject to $2x_1 + 5x_2 \le 10$ $2x_1 + 2x_2 \le 10$ $2x_1 + 3x_2 \ge 6$

(6)

OR

12. Solve by simplex method Maximize $Z=3x_1 + 2x_2$ Subject to $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ $x_1 \ge 0, x_2 \ge 0$

 $x_1 \ge 0, 3x_2 \ge 0$

(6)

398B2

MODULE II

Solve the following LPP by Big-M method 13. Minimize $Z = 2x_1 + x_2 + 3x_3$ Subject to $-3x_1 + x_2 - 2x_3 \ge 1$ $x_1 - 2x_2 + x_3 \ge 0$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

OR

14. Solve by two phase method Maximize $Z = 3x_1 - x_2$ Subject to $2x_1 + x_2 \ge 2$ (6) $x_1 + 3x_2 \le 2$ $x_2 \leq 4$ $x_1 \ge 0, x_2 \ge 0$

MODULE III

15. Solve the following assignment problem for minimum cost.

	1	2	3	4
А	32	26	35	38
В	27	24	26	32
С	28	22	25	34
D	10	10	16	16

OR

Solve the assignment problem for maximum profit. 16.

	1	2	3	4
А	50	53	54	50
В	47	50	48	50
С	49	50	60	61
D	63	64	60	61

MODULE IV

17. Find the value of the game to the payoff matrix.

	B1	B2	B3
A1	3	2	4
A2	-2	1	-3
A3	0	-2	3

OR

Page 2 of 3

E

(6)

(6)

_	_
٦	
_	

10	TIme			4 -	1	1	f 11	
18	LISE	orannical	mernoa	TO	SOLVE	The	Innwing	game
10.	0.00	siapincai	memou	ιU	50100		IONOWINE	Same
							0	0

	B1	B2	B3	B4	B5
A1	2	-4	6	-3	5
A2	-3	4	-4	1	0

(6)

(6)

MODULE V

19.	In a public telephone booth having one phone, the average arrival rate
	is 15 per hour and the average service rate is 3 mins. Calculate

- i. the average number of customers waiting in the system.
- ii. the average number of customers waiting in the queue.
- iii. probability that a person arriving at booth have to wait in the queue. (6)
- iv. expected waiting time of the customers in the system.

OR

- 20. In a given M/m/1 queueing system the average arrivals is 4 customers per minute and traffic intensity, $\rho = 0.7$. Find
 - i. mean number of customers in the system
 - ii. mean number of customers in the queue
 - iii. probability that the serves is idle
 - iv. mean waiting time