839A2

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (R,S), DECEMBER 2023 COMMON TO CE, CH, EC, EE, FT, ME, RA (2020 SCHEME)

- 20MAT201 **Course Code :**
- Course Name: **Partial Differential Equations and Complex Analysis**

Max. Marks : 100 **Duration: 3 Hours**

PART A

(Answer all questions. Each question carries 3 marks)

Determine the partial differential equation by eliminating arbitrary constants 1. from $z = (x^2 + a^2)(y^2 + b^2)$.

2. Solve $x^2p + y^2q = z^2$.

- 3. List any three assumptions in deriving one dimensional heat equation.
- 4. Write the boundary conditions and initial conditions of the string of length *l* which is initially at rest in equilibrium position and each of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = \mu_0 \sin\left(\frac{\pi x}{l}\right), 0 < x < l$
- 5. Determine *Ref* and *Imf* of $f(z) = e^{iz}$.
- 6. Determine the critical points of the function $w = \frac{1}{2}(z + \frac{1}{z})$.
- 7. Evaluate $\int \bar{z} dz$ over the circle |z| = 1.
- 8. Find the Taylor series expansion of $f(z) = \frac{1}{1+z}$ about z = 3.
- 9. Determine the singularities of the function $f(z) = \frac{ze^{z}}{z^{2}+a}$.
- Find the residue of the function $\frac{1-e^{2z}}{z^4}$ at z = 0. 10.

PART B

(Answer one full question from each module, each question carries 14 marks) **MODULE I**

11. Solve (y - z)p + (x - y)q = (z - x). a) (7)

Using the method of separation of variables solve b) (7) $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 3e^{-5x}$.

OR

Solve $\frac{\partial u}{\partial x} - 2 \frac{\partial u}{\partial t} - u = 0$, $u(x, 0) = 6e^{-3x}$ using method 12. a) (7)of separation of variables.

Register No.:

А

Find the partial differential equation of all spheres with center b) (7)on z-axis and radius a.

MODULE II

- 13. Derive the solution of one-dimensional wave equation. a) (7)
 - b) (7)A rod of length L is heated in such a way that its ends A and B are at zero temperature. If initially its temperature is given by $u = \frac{cx(L-x)}{t^2}$, $0 \le x \le L$, find the temperature at time t.

OR

- 14. A uniform elastic string of length 60cms is fastened at two ends. a) (7)The initial displacement is given by $y(x, 0) = 60x - x^2$ for 0 < x < 60, while the initial velocity is zero. Evaluate the displacement function y(x,t).
 - b) (7)Solve the one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,t) \neq \infty$ if $t \rightarrow \infty$; $u(0,t) = 0 = u(\pi,t)$; $u(x, 0) = \pi x - x^2, \quad 0 \le x \le \pi.$

MODULE III

- 15. (7)If f(z) is analytic in a domain D and |f(z)| is constant in D then a) show that f(z) is a constant.
 - $u = y^3 3x^2y$ is harmonic. Hence find its Examine whether b) (7)harmonic conjugate.

OR

- 16. a) Show that f(z) = sin z is analytic everywhere. Also find f'(z). (7)
 - Determine the region of the w-plane into which the triangular b) (7)region bounded by x = 1, y = 1 and x + y = 1 is mapped by $w = z^2$

MODULE IV

- 17. Evaluate $\int_0^{1+i} (x^2 - ixy) dz$ along the path $y = x^2$. a) (7)b) (7)
 - Evaluate $\oint \sec z \, dz$ over the circle |z| = 1.

OR

Evaluate $\int_C \log z \, dz$ where C is the circle |z|=1. 18. a) (7)

b) Evaluate
$$\int \frac{z^2 + 2z + 3}{z^2 - 1} dz$$
 over $|z - 1| = 1$. (7)

MODULE V

19. Determine the Laurent's series expansion of $f(z) = \frac{z}{(z+1)(z+2)}$ (7)a) about z = -2 in 0 < |z + 2| < 1.

b) Describe different types of singular points of an analytic (7) function with examples.

OR

20. a) Evaluate
$$\int \frac{\cos \pi z^2}{(z-1)(z-2)} dz$$
 over $|z| = 3.$ (7)

b) Using contour integration, evaluate $\int_0^\infty \frac{1}{(x^2+a^2)^2} dx.$ (7)

Α