Register No.:

## SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FIFTH SEMESTER B.TECH DEGREE EXAMINATION (R), DECEMBER 2023 CIVIL ENGINEERING (2020 SCHEME)

Course Code : 20CET391

Course Name: Structural Dynamics

Max. Marks : 100

#### PART A

#### (Answer all questions. Each question carries 3 marks)

- 1. A weight of 20 N is suspended at the midpoint of a simply supported beam using a coil of stiffness 40 N/mm. The mass of the beam is negligible in comparison to the suspended mass. Determine the angular frequency and natural period of vibration.  $E = 2.1 \times 10^5$  MPa, I = 281.25 x 10<sup>5</sup> mm<sup>4</sup>.
- 2. Explain the importance of the logarithmic decrement method. How is it estimated?
- 3. Elucidate Transmissibility.
- 4. Describe the applications of vibration isolation systems.
- 5. Explain shear building frames.
- 6. State and explain the orthogonality condition.
- 7. Explain the concept of frequency response function (FRF).
- 8. Explain mode superposition method of analysis.
- 9. Describe seismic waves.
- 10. Define seismology. List out the causes of earthquake.

#### PART B

# (Answer one full question from each module, each question carries 14 marks)

#### **MODULE I**

- 11. a) Differentiate among critically damped, over-damped, and underdamped systems. (4)
  - b) In a system, the amplitude of motion reduces from 0.5 m to 0.1 m in 4 cycles in 8 seconds, Find (i) the damped natural period (ii) logarithmic decrement (iii) the damping ratio (iv) the damping coefficient if k=12.5 N/mm and m=2 kg.

#### OR

A generator of 1-ton weight is placed on a concrete plank of width 500
mm, length 2 m and thickness 120 mm. The generator is running at (14)
2000 rpm. The plank is made up of M20-grade concrete. Find (i) static

Name:

303B1

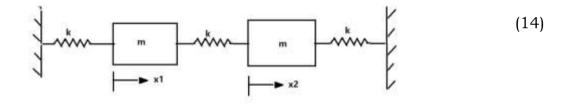
**Duration: 3 Hours** 

ne: .....

## 303B1

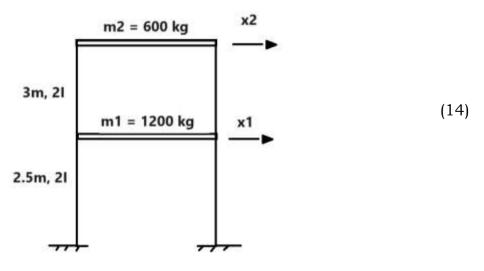
deflection (ii) dynamic deflection of generator assuming the system is undamped (iii) dynamic deflection assuming 5% damping.

#### **MODULE II**


13. A 1000 kg machine is mounted on four identical springs of total spring constant k and having negligible damping. The machine is subjected to a harmonic external force of amplitude 500 N and frequency of 180 rpm. Determine the amplitude of motion of the machine and the maximum force transmitted to the foundation because of unbalanced force (i) when k=1.96 x 10<sup>5</sup> N/m (ii) when k= 9.8 x10<sup>4</sup> N/m.

#### OR

- 14. a) Elucidate the concept of Duhamel Integral. (4)
  - b) Derive the expression for steady-state response and DLF for a rectangular impulse. (10)


#### **MODULE III**

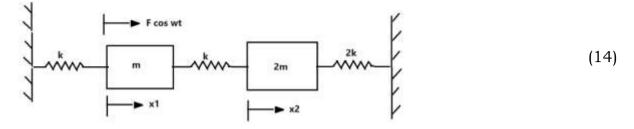
15. Determine the natural frequencies and mode shape of the system given below.



OR

 Calculate the natural frequency and mode shapes of vibration for the MDOF system shown in the figure. I= 5 x10<sup>5</sup> mm<sup>4</sup>, E = 2.5 x10<sup>4</sup> N/mm<sup>2</sup> for all columns.




**MODULE IV** 

## 303B1

17 Derive the characteristic equation of forced vibration of the undamped MDOF system. (14)

#### OR

18. Determine the modes of vibration and the steady-state response of the system given below.



#### **MODULE V**

- 19. a) Explain earthquake analysis using the response spectrum (4) method.
  - b) What is design response spectra? How is it developed? Explain the response spectra as specified in IS 1893:2002 (10)

#### OR

20. Determine the natural frequencies and mode shapes of a uniform thin slender rod having one end fixed and the other end free. Plot the first (14) three principle mode shapes.

### Η