n	UJOAJ	Total Pages: J
Register	Nome	
No.:	Name	
	SAINTGITS COLLEGE OF ENGINE	ERING (AUTONOMOUS)
(4	AFFILIATED TO APJ ABDUL KALAM TEO	CHNOLOGICAL UNIVERSITY,
	THIRUVANANTHAP	URAM)
FIFTH	I SEMESTER B.TECH DEGREE EXAMI COMPUTER SCIENCE AND	NATION (R,S), DECEMBER 2023 ENGINEERING
	(2020 SCHEM	IE)
CourseCode	: 20CST301	
CourseName	e: Formal Languages and Automata	Theory
May Marks		Duration: 3 Hours

6 7 Q A 7

100

:

ration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- Consider X and Y are two languages over alphabet {0, 1} represented by regular 1. expression $0^{*}(10^{*})^{*}$ and $(0^{*} + 1^{*})^{*}$ respectively. Is X =Y? Justify your answer with proper proof.
- 2. What is the complement of the language accepted by the NFA shown below? Assume $\Sigma = \{a\}$ and ε is the empty string

3. Identify the language accepted by the following DFA?

- Obtain the regular expression for the following set: 4. $\{b^2, b^5, b^8, \dots, \}$
- Write the equivalent Context Free grammar for the following regular expression: 5. $(00 + 11 + 10 + 01)^*$
- 6. Assume that you are asked to design a comment statement for a C programming language. Comments appear between the delimiters such as /*and */. For simplicity, assume the alphabet $\Sigma = \{a, b, /, *\}$. Give an NFA that recognises the language.
- 7. Consider the following grammar (the start symbol is S; the alphabets are implicit in the rules):

S-->SS|AAA|ε A -->aA|Aa|b Is the grammar ambiguous? Prove.

- 8. Distinguish between decidable and undecidable problems.
- 9. Eliminate left recursion from the following grammar:

 $A \rightarrow Ba$ / Aa / c

 $B \rightarrow Bb / Ab / d$

10. Give a deterministic PDA to accept the language $L = \{0^n 1^m 0^n \mid n, m > 0\}$

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Convert the E-NFA to DFA.

b) What is dead or trap state? Explain with an example. (4)

OR

- 12. a) Design a DFA for the language aba*. Also show that the DFA works fine while tracing the instance abaa. (7)
 - b) Design a DFA for language
 L={w e {a, b} | each a in w is immediately preceded and immediately (7) followed by b}

MODULE II

13. a)

Write regular expressions for the following language

- i) All strings that contain an even number of b's.
- ii) $L = \{w | w \text{ contains at least two 0's and at most one 1} \}.$
- iii) The set of strings of 0's and 1's with at most one pair of (6) consecutive 1's.

A

Α

(12)

b) Find the Regular Expression from the NFA given below:

OR

14. a) Find the minimal DFA for the following automata.

Current State	a	b
$\rightarrow q_0$	\mathbf{q}_5	\mathbf{q}_1
q_1	\mathbf{q}_2	\mathbf{q}_{6}
*q_2	\mathbf{q}_2	\mathbf{q}_0
q ₃	\mathbf{q}_{6}	\mathbf{q}_2
Q 4	\mathbf{q}_5	q 7
q 5	\mathbf{q}_{6}	q 2
q 6	q 4	q 6
q 7	q ₂	q 6

b) What will be the maximum number of states in a DFA whose equivalent NFA has k-states. Justify your answer. (2)

MODULE III

15. a) Using Myhill Nerode theorem , minimize the following DFA.

b) Consider the following machine M. Does the machine accept the string **'abaaba'**? Prove your answer.

(4)

(9)

OR

16. a) Convert the given Context Free grammar to Greibach Normal Form (GNF):

$$P \rightarrow RT | QQ$$

$$Q \rightarrow d | PQ$$

$$R \rightarrow d$$

$$T \rightarrow b$$
(10)

- b) Differentiate between Null and Unit production (4)
 - **MODULE IV**

17. a) Construct a Pushdown Automata that recognizes the language

- (7) $L=\{w \in \{0, 1\}^* \mid w = w^R \text{ and the length of } w \text{ is odd } \}$
- b) Using the PDA constructed, check if the string **abbc is** accepted. (7)

OR

- 18. a) Give pushdown automata that recognize the following languages. A = { w ∈ {0, 1}* | w contains at least three 1s }
 b) Let M be the PDA defined by
 - b) Let M be the PDA defined by $Q = \{q0, q1, q2\}$ $\Sigma = \{a, b\}$ $\Gamma = \{A\}$ $F = \{q1, q2\}$

$$\begin{split} \delta(q0, a, \lambda) &= \{ [q0, A] \} \\ \delta(q0, \lambda, \lambda) &= \{ [q1, \lambda] \} \\ \delta(q0, b, A) &= \{ [q2, \lambda] \} \\ \delta(q1, \lambda, A) &= \{ [q1, \lambda] \} \\ \delta(q2, b, A) &= \{ [q2, \lambda] \} \\ \delta(q2, \lambda, A) &= \{ [q2, \lambda] \} \end{split}$$

- a) Describe the language accepted by M.
- b) Give the state diagram of M.

MODULE V

Page 4 of 5

-				638/	A3			Total Pages:	5
19.	a)	Design a Turing machine that recognizes the languages: All strings in the Language $0^n 1^n 2^n$, where n>=0:					ages:	(8)	
	b)	Elucidate differ	ent	types of	Turing I	Machine	s.		(6)
					OR				
20.	a)	Let M be the Tu	iring	g machin	ne define	d by δ:			
		-	δ	В	a	b	с		
			$egin{array}{c} q_0 \ q_1 \ q_2 \end{array}$	$q_1, \mathrm{B,R}$ $q_2, \mathrm{B,L}$	$q_{1},$ a,R $q_{2},$ c,L	q_1,c,R	$q_1, \mathrm{c,R}$ $q_2, \mathrm{b,L}$		(8)
		Trace the comp diagram of M.	utat	ion for t	he inpu	t string	aabca (live the state	
	b)	Construct a Tur of the following L $\{a^i b^j i \ge 0, \}$	ring lanţ j≥i	machine guage by	e with in 7 final st	put alpł ate:	nabet {a,	b} to accept each	(6)
		*******	****	*******	*******	******	******	**	

A