SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIFTH SEMESTER INTEGRATED MCA DEGREE EXAMINATION (R), DECEMBER 2023 (2020 SCHEME)
Course Code: 20IMCAT309
Course Name: Introduction to Operations Research
Max. Marks: 60
Duration: 3 Hours

Non-programmable calculators may be permitted

PART A
(Answer all questions. Each question carries 3 marks)

1. Write any three basic assumptions in LPP.
2. Write any three applications of LPP.
3. Define artificial variable with an example.
4. Find the dual of

$$
\begin{gathered}
\text { Max } z=3 x_{1}+x_{2}+x_{3} \\
\text { Subject to } x_{1}+x_{2}+x_{3} \leq 5 \\
2 x_{1}+x_{3} \leq 10 \\
x_{2}+3 x_{3} \leq 15 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

5. What do you mean by an unbalanced Transportation Problem and explain how to convert the unbalanced Transportation Problem into a balanced one?
6. Find an initial basic feasible solution by North West Corner Cell method

Destinations

				A	B
C				Supply	
Sources	W	2	7	4	5
	X	3	3	1	8
	Y	5	4	7	7
	Z	1	6	2	14
Demand		7	9	18	

7. What is two person zero sum game?
8. Find the saddle point of the following game.

Player B
Player A $\left[\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right]$
9. Explain customer's behaviour in a Queue.
10. Explain the various queue disciplines.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Solve using Graphical method

$$
\begin{gather*}
\text { Max } z=3 x_{1}+4 x_{2} \\
\text { subject to } x_{1}+2 x_{2} \leq 4 \tag{6}\\
3 x_{1}+2 x_{2} \leq 6 \\
x_{1}, x_{2} \geq 0
\end{gather*}
$$

OR

12. Solve using Simplex method

$$
\begin{gather*}
\text { Max } z=7 x_{1}+6 x_{2} \\
\text { subject to } x_{1}+x_{2} \leq 4 \tag{6}\\
2 x_{1}+x_{2} \leq 6 \\
x_{1}, x_{2} \geq 0
\end{gather*}
$$

MODULE II

13. Solve by Two-Phase method

$$
\begin{gather*}
\text { Min } z=6 x_{1}+5 x_{2} \\
\text { subject to } 2 x_{1}+x_{2} \geq 80 \\
x_{1}+2 x_{2} \geq 60 \tag{6}\\
x_{1}, x_{2} \geq 0
\end{gather*}
$$

OR

14. Solve the following LPP using Big M method

$$
\begin{gather*}
\text { Min } z=9 x_{1}+10 x_{2} \\
\text { subject to } x_{1}+2 x_{2} \geq 25 \tag{6}\\
4 x_{1}+3 x_{2} \geq 24 \\
3 x_{1}+2 x_{2} \geq 60 \\
x_{1}, x_{2} \geq 0
\end{gather*}
$$

MODULE III

15. Solve the Transportation problem to maximize profit

> Profit in Rs/Unit

Destinations

A					B	C
Sources	X	15	51	42	33	23
	Y	80	42	26	81	44
	Z	90	40	66	60	33
Demand		23	31	16	30	

OR

16. Solve the following minimal assignment problem

Man

		1	2	3	4
		12	30	21	15
	B	18	33	9	31
	C	44	25	21	21
	D	14	30	28	14

MODULE IV

17. a) Write principle of dominance.
b)

Apply dominance rule and solve the following game problem
Player B

(6)

OR

18. Solve the following game graphically

$$
\left[\begin{array}{ccccl}
B_{1} & B_{2} & B_{3} & B_{4} & B_{5} \\
2 & -4 & 6 & -3 & 5 \tag{6}\\
-3 & 4 & 4 & 1 & 0
\end{array}\right]
$$

MODULE V

19. Explain the basic characteristics of a queuing model.

OR

20. In a public telephone booth having just one phone, the arrivals are considered to be Poisson with the average of 15 per hour. The length of a phone call is assumed to be distributed exponentially with mean 3 minutes. Find the
(i) average number of customers waiting in the system.
(ii) average number of customers waiting in the queue.
(iii) expected waiting time of a customer in the system.
(iv) expected waiting time of a customer in the queue.
(v) percentage of time that the telephone booth will be idle.
