398B1

Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER INTEGRATED MCA DEGREE EXAMINATION (R), DECEMBER 2023

(2020 SCHEME)

Course Code: 20IMCAT309

Course Name: **Introduction to Operations Research**

Max. Marks: 60 **Duration: 3 Hours**

Non-programmable calculators may be permitted

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Write any three basic assumptions in LPP.
- 2. Write any three applications of LPP.
- 3. Define artificial variable with an example.

4. Find the dual of

$$Max \ z = 3x_1 + x_2 + x_3$$

Subject to $x_1 + x_2 + x_3 \le 5$
 $2x_1 + x_3 \le 10$
 $x_2 + 3x_3 \le 15$
 $x_1, x_2, x_3 \ge 0$

- 5. What do you mean by an unbalanced Transportation Problem and explain how to convert the unbalanced Transportation Problem into a balanced one?
- 6. Find an initial basic feasible solution by North West Corner Cell method Destinations

		А	В	С	Supply
	W	2	7	4	5
Sources	Х	3	3	1	8
Sources	Y	5	4	7	7
	Ζ	1	6	2	14
Demand		7	9	18	

- 7. What is two person zero sum game?
- 8. Find the saddle point of the following game.

Player B Player A $\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$

- 9. Explain customer's behaviour in a Queue.
- 10. Explain the various queue disciplines.

398B1

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Solve using Graphical method

$$Max \ z = 3x_1 + 4x_2$$

subject to $x_1 + 2x_2 \le 4$
 $3x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$ (6)

OR

12. Solve using Simplex method

$$Max \ z = 7x_1 + 6x_2$$

subject to $x_1 + x_2 \le 4$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$ (6)

MODULE II

13. Solve by Two-Phase method

$$Min \ z = 6x_1 + 5x_2$$

subject to $2x_1 + x_2 \ge 80$
 $x_1 + 2x_2 \ge 60$
 $x_1, x_2 \ge 0$ (6)

OR

14. Solve the following LPP using Big M method

$$Min z = 9x_{1} + 10x_{2}$$

subject to $x_{1} + 2x_{2} \ge 25$
 $4x_{1} + 3x_{2} \ge 24$
 $3x_{1} + 2x_{2} \ge 60$
 $x_{1}, x_{2} \ge 0$ (6)

Total Pages: 4

MODULE III

15. Solve the Transportation problem to maximize profit

Profit in Rs/Unit Destinations В С А D Supply 15 51 42 33 Х 23 Sources Y 80 42 26 81 44 Ζ 90 40 66 60 33 23 31 16 30 Demand

OR

16. Solve the following minimal assignment problem

	Man						
		1	2	3	4		
	A	[12	30	21	15]		
Job	B C	18	33 25	9 21	31		
	D	L_{14}	30	28	$\begin{bmatrix} -1 \\ 14 \end{bmatrix}$		

MODULE IV

17.	a)	Write principle of dominance.	(6)						
	b)								
		Apply dominance rule and solve the following game problem							
	Player B								
		I II III IV V	(6)						
		1 [2 4 3 3 4]	(0)						

Player A $\begin{bmatrix} 2 & 4 & 3 & 3 & 4 \\ 5 & 6 & 3 & 7 & 8 \\ 3 & 4 & 2 & 8 & 4 & 3 \end{bmatrix}$ OR

18. Solve the following game graphically

Player B

$$B_1 \quad B_2 \quad B_3 \quad B_4 \quad B_5$$
Player A $\begin{array}{cccc} A_1 & 2 & -4 & 6 & -3 & 5 \\ A_2 & -3 & 4 & 4 & 1 & 0 \end{array}$
(6)

(6)

MODULE V

19. Explain the basic characteristics of a queuing model.

OR

- 20. In a public telephone booth having just one phone, the arrivals are considered to be Poisson with the average of 15 per hour. The length of a phone call is assumed to be distributed exponentially with mean 3 minutes. Find the
 - (i) average number of customers waiting in the system.
 - (ii) average number of customers waiting in the queue.
 - (iii) expected waiting time of a customer in the system.
 - (iv) expected waiting time of a customer in the queue.
 - (v) percentage of time that the telephone booth will be idle.

E

(6)

(6)