E 437B1 Total Pages: 3

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION (R), DECEMBER 2023 ROBOTICS AND AUTOMATION (2001 Sehema)

(2021 Scheme)

Course Code: 21RA105-C

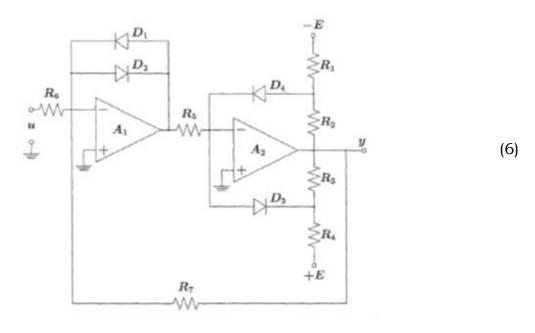
Course Name: Non-linear Control Systems

Max. Marks: 60 Duration: 3 Hours

Provide ordinary Graph sheet

PART A

(Answer all questions. Each question carries 3 marks)


- 1. What are the characteristics of non-linear systems?
- 2. Derive the describing function of relay non-linearity.
- 3. Differentiate stability in the small with global stability.
- 4. Describe the role of integral control in feedback linearization?
- 5. Explain the stability analysis of non linear systems using Popov's criterion.
- 6. Explain the best controller for a robot manipulator.
- 7. Describe the recent developments in sliding mode control with its applications
- 8. What is chattering in SMC?

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Explain the non-linearities present in the system given below

OR

10. Determine the singular point and construct the phase trajectory using isocline method for the system given by $\ddot{w} + 2\zeta\omega_n\dot{w} + w_n^2 = 0$. (6) Where $\zeta = 0.15$, $\omega_n = 1$ rad/sec, w(0) = 1.5 and $\dot{w}(0) = 0$.

MODULE II

- 11. a) Explain the conditions for stability of oscillations. (2)
 - b) Derive the describing function analysis of saturation non-linearity. (4)

OR

12. Derive the describing function analysis of deadzone non linearity. (6)

MODULE III

13. Determine the stability of the system described by X = AX, where $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ by Lyapunov theorem and also find a suitable Lyapunov (6) function.

OR

- 14. a) Explain the stability analysis of non-linear system. (2)
 - b) Explain second method of Lyapunov with equations. (4)

MODULE IV

15. Explain about input output linearization with block diagrams (6)

OR

- 16. a) With a neat block diagram explain the concept of state feedback linearization. (4)
 - b) What you mean by Full state Linearization. (2)

MODULE V

- 17. a) Which are the thrust areas where adaptive control systems are more effective?
 - b) Design a sliding mode control of non-linear system. (3)

OR

E		437B1 Total Pages:	3
18.		With the help of suitable diagram explain Model Reference adaptive system.	(6)
		M ODULE VI	
19.	a)	With a neat block diagram explain variable structure control systems.	(4)
	b)	Write the properties of sliding motion.	(2)
		OR	
20.	a) b)	Design a variable structure control system for a MIMO system. Discuss the scheme used in flight control systems.	(3) (3)
