SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2023

(2021 Scheme)

Course Code:
Course Name:
Max. Marks:

PART A

(Answer all questions. Each question carries 3 marks)

1. Obtain the reduction formula for gamma function.
2. Find the Laplace transform of $e^{4 t} \sin 2 t \cos t$.
3. What is the difference between Fredholm and Volterra integral equation.
4. Find the partial differential equation of $z=a x+b y+\sqrt{a^{2}+b^{2}}$ by eliminating the arbitrary constants a and b .
5. Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $u(x, 0)=6 e^{-3 x}$
6. Express the transverse vibration of a solid object which is described by 3Dimensional wave equation.
7. Determine whether the following equation is elliptic or hyperbolic

$$
\left(1+x^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}+\left(5+2 x^{2}\right) \frac{\partial^{2} u}{\partial x \partial t}+\left(4+x^{2}\right) \frac{\partial^{2} u}{\partial t^{2}}=0
$$

8. In which parts of the (X, Y) plane is the following equation elliptic $u_{x x}+u_{y x}+\left(x^{2}+44 y^{2}\right) u_{y y}=2 \sin x y$

PART B
 (Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Obtain the generating function for $J_{n(x)}$

OR
10. Solve $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0$

MODULE II

11. Solve by the method of Laplace transforms the equation
$y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$ given $y(0)=0, y^{\prime \prime}(0)=6$.

OR

12. Find the Fourier sine transform of $e^{-|x|}$, hence show that

$$
\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi e^{-m}}{2}, m>0
$$

MODULE III

13. Solve the Abel's integral equation $\int_{0}^{x} \frac{y(t)}{\sqrt{x-t}} d t=1+2 x-x^{2}$

OR

14. Using the method of successive approximations, solve the Volterra integral equation $y(x)=1+x+\int_{0}^{x}(x-1) y(t) d t$.

MODULE IV

15. Find the equation of integral surface of differential equation $2 y(z-3) p+$ $(2 x-z) q=y(2 x-3)$ which passes through circle $z=0, x^{2}+y^{2}=2 x$

OR

16. Solve $2 x z-p x^{2}-2 q x y+p q=0$

MODULE V

17. Solve by the method of separation of variables $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$

OR

18. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement function $y(x, t)$.

MODULE VI

Solve the boundary value problem $u_{t t}=u_{x x}$ with the conditions $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{u}(\mathrm{x}, 0)=\frac{1}{2} x(1-x)$ and $u_{t}(x, 0)=0$, taking $h=k=0.1$ for
19.
$0 \leq t \leq 4$. Compare your solution with the exact solution at $x=0.5$ and $\mathrm{t}=0.3$.

Solve $\nabla^{2} u=0$ under the conditions $(h=1, k=1) u(0, y)=0, u(4, y)=12+y$ for 20. $0 \leq y \leq 4 ; \mathrm{u}(\mathrm{x}, 0)=3 \mathrm{x}, \mathrm{u}(\mathrm{x}, 4)=x^{2}$ for $0 \leq \mathrm{x} \leq 4$.

