Name

Register No.:

Α

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M. TECH DEGREE EXAMINATION (Regular), DECEMBER 2023

(Power Systems)

(2021 Scheme)

Course Code : 21PS101

Course Name: Applied Mathematics

Max. Marks : 60

PART A

(Answer all questions. Each question carries 3 marks)

- Find the Z-transform of *n*. 1.
- Solve Euler's equation for the functional $\int_a^b (y^2 + x^2 y') dx$. 2.
- 3. Show that y(x) = 1 - x is a solution of the integral equation $\int_0^x e^{x-t}y(t)dt = x$.
- 4. Distinguish between Discrete Time Markov chains and Continuous Time Markov chains.
- Write the normal equations for fitting a curve $y = a + bx + cx^2$ to the given set of points. 5.
- Explain briefly the Natural cubic spline approximation. 6.
- 7. Let V be the real vector space of all functions f from R into R and W be the set of all functions f such that $f(x^2) = [f(x)]^2$. Show that W is not a subspace of V.
- Let *T* be the linear operator on R^3 defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + x_3, -2x_1 + x_2, -x_1 + x_3, -2x_1 + x_2, -x_1 + x_3, -2x_1 + x_3, -$ 8. $2x_2 + 4x_3$). Find the matrix of *T* in the standard ordered basis for R^3 .

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

Using the Residue method, solve $y_k + \frac{1}{9}y_{k-2} = \frac{1}{3^k}\cos\frac{k\pi}{2}$, $k \ge 0$. 9. (6)

OR

10. Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$. (6)

MODULE II

Find the curves on which the functional $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 2xy) dx$ with y(0) = 0 and 11. (6) $y\left(\frac{\pi}{2}\right) = 0$ be extremized.

OR

A particle is moving with a force perpendicular to and proportional to its distance 12. (6) from the line of zero velocity. Show that the path of quickest descent is a circle.

MODULE III

Convert the differential equation y''(x) + xy(x) = 1, y(0) = y'(0) = 0 to the 13. (6) Volterra integral equation.

Duration: 3 Hours

378A1

Α

14. Solve the Fredholm integral equation $y(x) = 1 + \lambda \int_0^x xty(t)dt$ using successive (6) approximation.

OR

MODULE IV

15. Let $X_1, X_2, ..., X_n$ be a random sample taken from a population with mean μ and variance σ^2 . Show that sample mean \overline{X} and sample variance S^2 are unbiased (6) estimators of μ and σ^2 respectively.

OR

16. Find the Maximum Likelihood Estimate (MLE) of λ , based on random samples taken from Poisson population with parameter λ . (6)

MODULE V

17. Fit a straight line to the following data

Х	0	1	2	3	4	(6)
у	1	1.8	3.3	4.5	6.3	

OR

18. Fit a second-degree parabola of the form $y = a + bx + cx^2$ to the following data. y(0) = 1.2, y(1) = 1.7, y(2) = 2.1, y(3) = 2.8, y(4) = 5.9.(6)

MODULE VI

19. Find a basis and dimension for the subspace of R^4 spanned by the four vectors (1, 0, 2, 1), (2, 1, 3, 1), (1, 1, -1, 0), (2, 1, 1, 3). (6)

OR

- 20. Let *T* be a linear operator on R^3 , the matrix of which in the standard ordered basis is
 - $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$. Find a basis for the range of *T* and a basis for the null space of *T*. (6)
