SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
 (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
 FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2023
 (Power Systems)
 (2021 Scheme)

 Course Code : 21PS101

 Course Code : 21PS101
 Course Name: Applied Mathematics
 Max. Marks : 60
 Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Find the Z-transform of n.
2. Solve Euler's equation for the functional $\int_{a}^{b}\left(y^{2}+x^{2} y^{\prime}\right) d x$.
3. Show that $y(x)=1-x$ is a solution of the integral equation $\int_{0}^{x} e^{x-t} y(t) d t=x$.
4. Distinguish between Discrete Time Markov chains and Continuous Time Markov chains.
5. Write the normal equations for fitting a curve $y=a+b x+c x^{2}$ to the given set of points.
6. Explain briefly the Natural cubic spline approximation.
7. Let V be the real vector space of all functions f from R into R and W be the set of all functions f such that $f\left(x^{2}\right)=[f(x)]^{2}$. Show that W is not a subspace of V.
8. Let T be the linear operator on R^{3} defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+\right.$ $\left.2 x_{2}+4 x_{3}\right)$. Find the matrix of T in the standard ordered basis for R^{3}.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Using the Residue method, solve $y_{k}+\frac{1}{9} y_{k-2}=\frac{1}{3^{k}} \cos \frac{k \pi}{2}, k \geq 0$.

OR

10. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.

MODULE II

11. Find the curves on which the functional $\int_{0}^{\frac{\pi}{2}}\left(y^{\prime 2}-y^{2}+2 x y\right) d x$ with $y(0)=0$ and $y\left(\frac{\pi}{2}\right)=0$ be extremized.

OR

12. A particle is moving with a force perpendicular to and proportional to its distance from the line of zero velocity. Show that the path of quickest descent is a circle.

MODULE III

13. Convert the differential equation $y^{\prime \prime}(x)+x y(x)=1, y(0)=y^{\prime}(0)=0$ to the Volterra integral equation.
14. Solve the Fredholm integral equation $y(x)=1+\lambda \int_{0}^{x} x t y(t) d t$ using successive approximation.

MODULE IV

15. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample taken from a population with mean μ and variance σ^{2}. Show that sample mean \bar{X} and sample variance S^{2} are unbiased estimators of μ and σ^{2} respectively.

OR

16. Find the Maximum Likelihood Estimate (MLE) of λ, based on random samples taken from Poisson population with parameter λ.

MODULE V
17. Fit a straight line to the following data

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

OR
18. Fit a second-degree parabola of the form $y=a+b x+c x^{2}$ to the following data.

$$
\begin{equation*}
y(0)=1.2, y(1)=1.7, y(2)=2.1, y(3)=2.8, y(4)=5.9 . \tag{6}
\end{equation*}
$$

MODULE VI

19. Find a basis and dimension for the subspace of R^{4} spanned by the four vectors $(1,0,2,1),(2,1,3,1),(1,1,-1,0),(2,1,1,3)$.

OR

20. Let T be a linear operator on R^{3}, the matrix of which in the standard ordered basis is $\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1\end{array}\right]$. Find a basis for the range of T and a basis for the null space of T.
