SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2023VLSI AND EMBEDDED SYSTEMS(2021 Scheme)
Course Code: 21VE102
Course Name: Advanced Digital Design
Max. Marks: 60
Duration: 3 Hours
PART A
(Answer all questions. Each question carries 3 marks)

1. List the differences between mealy and moore machines.
2. Explain static hazards.
3. Design a 8 bit register with parallel load data input.
4. Explain micro programmed controller.
5. Describe high-level state machine.
6. Explain clock skew.
7. Describe visual method for two-level size optimization.
8. Define state encoding.
PART B
(Answer one full question from each module, each question carries 6 marks) MODULE I9. Design a circuit to detect 101 from given input data stream using mealymachine.(6)
OR
9. Minimize the function using Quin-McCluskey method $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=$ $\sum(2,3,7,8,15)$.
MODULE II
10. Explain races and cycles in digital circuits(6)OR
11. Explain Dynamic hazards in digital circuits.(6)
MODULE III
12. Design and sketch the circuit for a 4-bit parallel load shift right register.(6)
OR
13. Design a circuit using adders and logic gates to compute $\mathrm{F}=\mathrm{A}$ * B where Aand B are 4 -bit numbers.

MODULE IV

15. Explain RTL design process with an example.

OR

16. Show the connection of controller and data path in a Soda dispensing system. Describe its significance in RTL design process.

MODULE V

17. Explain clock jitter.

OR

18. Describe any two methods for avoiding clock skew with neat sketches.

MODULE VI

19. Draw the optimized logic circuit for the equation $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,2,6,7$, 9,13) (a)using Quine-McCluskey method (b) using a K-map. Compare the above methods.

OR

20. Explain two-level logic adder.
