SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2023

VLSI AND EMBEDDED SYSTEMS

(2021 Scheme)

Course Code: 21VE102

Course Name: Advanced Digital Design

Max. Marks: 60

Duration: 3 Hours

(6)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. List the differences between mealy and moore machines.
- 2. Explain static hazards.
- 3. Design a 8 bit register with parallel load data input.
- 4. Explain micro programmed controller.
- 5. Describe high-level state machine.
- 6. Explain clock skew.
- 7. Describe visual method for two-level size optimization.
- 8. Define state encoding.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

9. Design a circuit to detect 101 from given input data stream using mealy (6) machine.

OR

10. Minimize the function using Quin-McCluskey method $F(A,B,C,D) = \sum (2,3,7,8,15)$. (6)

MODULE II

11. Explain races and cycles in digital circuits. (6)

OR

12. Explain Dynamic hazards in digital circuits.

MODULE III

13. Design and sketch the circuit for a 4-bit parallel load shift right register. (6)

OR

14. Design a circuit using adders and logic gates to compute F=A*B where A and B are 4-bit numbers. (6)

Register No.:

855A1

MODULE IV

15. Explain RTL design process with an example.

OR

16. Show the connection of controller and data path in a Soda dispensing system. Describe its significance in RTL design process. (6)

MODULE V

17. Explain clock jitter.

(6)

(6)

OR

18. Describe any two methods for avoiding clock skew with neat sketches. (6)

MODULE VI

19. Draw the optimized logic circuit for the equation F(A,B,C,D)= ∑(0,2,6,7, 9,13) (a)using Quine-McCluskey method (b) using a K-map. Compare (6) the above methods.

OR

20. Explain two-level logic adder.

(6)

Β