SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SECOND SEMESTER B.TECH DEGREE EXAMINATION (S), AUGUST 2023
(2020 SCHEME)
Course Code:
20MAT 102
Course Name:
Vector Calculus, Differential Equations and Transforms
Max. Marks: 100

Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. A particle moves along the path $x=t, y=t^{2}, z=t^{3}$ Find the instantaneous velocity and acceleration at time t.
2. Verify that the force field $\vec{F}=e^{y} \hat{i}+x e^{y} \hat{j}$ is conservative on the entire $x y$-plane.
3. Use a line integral to find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
4. Determine whether the vector field $F(x, y, z)=(y+z) \hat{i}-x z^{3} \hat{j}+\left(x^{2} \sin y\right) \hat{k}$ is free of sources and sinks. If it is not, locate them.
5. Solve $y^{\prime \prime}-2 y^{\prime}+5 y=0$.
6. Find the Wronskian corresponding to the solution $y^{\prime \prime}-3 y^{\prime}+2 y=0$
7. Find the Laplace transform of $\sin t \cos 2 t$
8. Find the inverse Laplace transform of $\tan ^{-1}(2 / s)$
9. Find the Fourier sine transform of $e^{-a x}$
10. Does the Fourier cosine transform of $e^{x}, 0<x<\infty$ exist? Give reasons.

PART B
(Answer one full question from each module, each question carries 14marks)

MODULE I

11. a) Find the directional derivative of $f(x, y, z)=x^{2} y-y z^{3}+z$ at $P(1,-2,0)$ in the direction of the vector $\vec{a}=2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$.
b) Find $\operatorname{div} F$ and curl F of $F(x, y, z)=e^{x y} \hat{i}-2 \cos y \hat{j}+\sin ^{2} z \hat{k}$

OR
12. a) Determine a so that $(x+3 y) \boldsymbol{i}+(y-2 z) \boldsymbol{j}+(x+a z) \boldsymbol{k}$ is solenoidal.
b) Evaluate $\int_{C} F . d r$ along the curve C, where $F(x, y)=z \boldsymbol{i}+x \boldsymbol{j}+y \boldsymbol{k}$, $\mathrm{C}: r(t)=\sin t \boldsymbol{i}+4 \sin t \boldsymbol{j}+\sin ^{2} t \boldsymbol{k}, 0 \leq t \leq \frac{\pi}{2}$

MODULE II

13. a) Use Green's theorem to evaluate $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region defined by $x=0, y=0, x+y=1$.
b) Use Divergence theorem to find the outward flux of the vector field $\vec{F}=x^{3} \hat{\imath}+y^{3} \hat{\jmath}+z^{3} \hat{k}$ across the surface of the region that is enclosed by the circular cylinder $x^{2}+y^{2}=4$ and the plane $z=0$ and $z=4$.

OR

14. a) Use Green's theorem to evaluate $\oint_{c}\left(e^{x}+y^{2}\right) d x+\left(e^{y}+x^{2}\right) d y$ where C is the boundary of the region between $y=x^{2}$ and $y=2 x$.
b) Use Stoke's theorem evaluate the integral $\int_{c} \vec{F} . d \vec{r}$ where $\vec{F}=(x-y) \hat{i}+(y-z) \hat{j}+(z-x) \hat{k}$ and C is the boundary of the portion of the plane $x+y+z=1$ in the first octant with positive orientation.

MODULE III

15. a) Solve using the method of undetermined coefficients, $y^{\prime \prime}-4 y^{\prime}-12 y=3 e^{5 x}$
b) Solve using the method of variation of parameters $y^{\prime \prime}+4 y=\sec 2 x$

OR

16. a) Solve the initial value problem $y^{\prime \prime}+y^{\prime}+0.25 y=0, y(0)=3.0$, $y^{\prime}(0)=-3.5$
b) Solve using the method of undetermined coefficients, $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$

MODULE IV

17. a) Using Laplace transform solve $y^{\prime}+4 y=t, y(0)=1$
b) Using Convolution theorem, find the inverse Laplace Transform of $\frac{s}{\left(s^{2}+4\right)^{2}}$

OR

18. a) Find the inverse Laplace transform of $\frac{s+2}{(s+1)^{2}(s-2)}$
b) Solve the initial value problem $y^{\prime \prime}-y^{\prime}+9 y=0, y(0)=0.16, y^{\prime}(0)=0$

MODULE V

19. a) Find the Fourier integral representation of the function
$f(x)=\left\{\begin{array}{l}2 \text { for }|x|<1 \\ 0 \text { for }|x|>1\end{array}\right.$
b) Find the Fourier transform of $f(x)$ where $f(x)=\left\{\begin{array}{l}1-x^{2},|x|<1 \\ 0,|x|>1\end{array}\right\}$

OR

20. a) Solve the integral equation $\int_{0}^{\infty} f(x) \cos w x d x=\left\{\begin{array}{c}1-w, 0 \leq w \leq 1 \\ 0, w>1\end{array}\right.$ Hence deduce that $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2}$
b) Find the Fourier sine transform of $e^{-|x|}$, hence evaluate $\int_{0}^{\infty} \frac{w \sin w x}{1+w^{2}} d w$
