SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (S), AUGUST 2023
(2020 SCHEME)
Course Code: 20IMCAT104
Course Name: Introduction to Discrete Mathematics
Max. Marks: 60
Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Let $P(x)$ be the statement " $x^{2}>x$." What is the truth value of the quantification $\forall \mathrm{x} P(\mathrm{x})$, where the domain consists of all integers?
2. Check whether the following is a proposition
a. $\mathrm{y}+5=1$.
b. Read this carefully.
c. There are no black flies in Maine.
3. State Pigeonhole Principle.
4. How many cards must be selected from a standard deck of 52 cards to guarantee that at least 3 cards of same suit are chosen?
5. How many zeros are there at the end of 10 !
6. Find LCM $\left(2^{2} 3^{3} 5^{5}, 2^{5} 3^{3} 5^{2}\right)$
7. Explain Bipartite graph with example.
8. State the necessary and sufficient condition for Euler graph.
9. Define a Tree with example.
10. What is the value of the Prefix expression + - * $235 / \uparrow 234$.

PART B
(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Show that $\neg p \wedge q, \mathrm{r} \rightarrow p, \neg \mathrm{r} \rightarrow s$ and $\mathrm{s} \rightarrow t$ leads to the conclusion t without using truth table.
12. Define tautology. Check whether $\neg p \wedge(p \vee q) \rightarrow q$ is a Tautology or not by using truth table.

MODULE II

13. If n is a positive integer show that $1+2+\ldots+\mathrm{n}=\frac{(n)(n+1)}{2}$.

OR

14. Use mathematical induction to prove that $n^{3}-n$ is divisible by 3 whenever n is a positive integer.

MODULE III

15. Find $\operatorname{gcd}(9888,6060)$ by Euclidean algorithm.

OR

16. Solve the following system of linear congruence.
$\mathrm{x} \equiv 2 \bmod (3)$
$\mathrm{x} \equiv 4 \bmod (7)$
$x \equiv 6 \bmod (10)$
Using Chinese remainder theorem.

MODULE IV

17. Show that the following graphs are isomorphic.

OR

18. Use Dijkstra's algorithm to find the length of the shortest path between a and z from the following graph.

MODULE V

19. Find the pre order and post order traversal of the following tree

(6)
20. Use Prim's algorithm to find a minimum spanning tree in the graph shown below

