548A3

Register No.:

.... Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (S), AUGUST 2023

(2020 SCHEME)

Course Code: 20IMCAT104

Course Name:Introduction to Discrete MathematicsMax. Marks:60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Let P(x) be the statement "x ² > x." What is the truth value of the quantification $\forall x P(x)$, where the domain consists of all integers?
- 2. Check whether the following is a proposition
 - a. y+5=1.
 - b. Read this carefully.
 - c. There are no black flies in Maine.
- 3. State Pigeonhole Principle.
- 4. How many cards must be selected from a standard deck of 52 cards to guarantee that at least 3 cards of same suit are chosen?
- 5. How many zeros are there at the end of 10!
- 6. Find LCM(2²3³5⁵, 2⁵3³5²)
- 7. Explain Bipartite graph with example.
- 8. State the necessary and sufficient condition for Euler graph.
- 9. Define a Tree with example.
- 10. What is the value of the Prefix expression + * $235/\uparrow 234$.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Show that $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$ and $s \rightarrow t$ leads to the conclusion t without using truth table. (6)

OR

Β

548A3

OR

12. Define tautology. Check whether $\neg p \land (p \lor q) \rightarrow q$ is a Tautology or not by using truth table. (6)

MODULE II

13. If n is a positive integer show that $1 + 2 + \dots + n = \frac{(n)(n+1)}{2}$. (6)

OR

14. Use mathematical induction to prove that n³-n is divisible by 3 whenever n is a positive integer. (6)

MODULE III

15. Find gcd(9888, 6060) by Euclidean algorithm. (6)

OR

16. Solve the following system of linear congruence.
x = 2 mod (3)
x = 4 mod (7)
x = 6 mod (10)
Using Chinese remainder theorem.

MODULE IV

17. Show that the following graphs are isomorphic.

u4

 v_4

(6)

V3

Total Pages: **3**

Β

18. Use Dijkstra's algorithm to find the length of the shortest path between a and z from the following graph.

MODULE V

19. Find the pre order and post order traversal of the following tree

20. Use Prim's algorithm to find a minimum spanning tree in the graph shown below

