Name:

С

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (S), AUGUST 2023

(2020 SCHEME)

Course Code:20IMCAT106Course Name:Introduction to Digital Systems & Logic DesignsMax. Marks:60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Convert 1101101 and 11111 to decimal.
- 2. Convert decimal 125 and 479 to hexadecimal.
- 3. Prove (A + B) (A + C) = A + BC.
- 4. Implement NAND gate using NOR gate.
- 5. Write a short note on D flipflop.
- 6. Convert to standard SOP Y = A + BC.
- 7. Explain half subtractor with a diagram.
- 8. Design a 1-bit comparator.
- 9. Explain serial in parallel out shift register with a suitable diagram.
- 10. Compare synchronous and asynchronous counters.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Represent -17 in 8-bit sign magnitude, 1's complement and 2's (6) complement form.

OR

- 12. Do the following operations.
 - i. 1111 + 1111
 - ii. 101 * 111
 - iii. 1111 / 11.

MODULE II

13. State and prove Demorgan's Theorem.

Page 1 of 2

(6)

(6)

C	557A1	Total Pages: 2
	OR	
14.	Why is NAND gate called a universal gate?	(6)
	MODULE III	
15.	Minimize the boolean expression $f(A,B,C,D) = \Sigma\{1,4,5,6,7,9,11,12,13,14,15\}.$	(6)
	OR	
16.	Illustrate the working of JK flip-flop with a neat diagram.	(6)
	MODULE IV	
17.	Design a full adder.	(6)
	OR	
18.	With a diagram, explain 4*1 multiplexer.	(6)
	MODULE V	
19.	Discuss the working of Serial In Serial Out shift register.	(6)
	OR	
20.	Explain the working of 3-bit asynchronous counter.	(6)
