SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FOURTH SEMESTER B.TECH DEGREE EXAMINATION (S), AUGUST 2023 COMMON TO EE,EC
(2020 SCHEME)

Course Code : 20MAT204

Course Name: Probability, Random Processes and Numerical Methods
Max. Marks : 100
Duration: 3 Hours
Scientific calculator and statistical table are allowed.
PART A
(Answer all questions. Each question carries 3 marks)

1. Find the mean of the probability distribution of the number of heads obtained in two tosses of an unbiased coin.
2. A random variable X has the following PMF:

X	1	2	3	4	5	6	7
$f(x)$	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Find the value of k.
3. Let X be a random variable with PDF $f(x)=\left\{\begin{array}{c}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { elsewhere }\end{array}\right.$. Find mean and variance.
4. Diameter of an electric cable, say X, is assumed to be a continuous random variable with the function $f(x)=\left\{\begin{array}{c}6 x(1-x), 0 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$. Check whether $f(x)$ is a PDF.
5. Define a random process. What are the different types of random process?
6. Write down any three properties of power spectral density function.
7. Solve $x^{3}=25$ by Newton-Raphson method correct to 3 decimal places.
8. Write down Newton's divided difference formula.
9. Write the normal equations for fitting a straight line to a given set of pairs of data points.
10. Using Euler's method, find y at $x=0.25$, given $y^{\prime}=2 x y, y(0)=1, h=0.25$.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) A binomial distribution with parameter $n=5$ satisfies the property $8 P(X=4)=P(X=2)$. Find the probability mass function.
b) The probability that a man aged 50 years will die within a year is 0.01125 . What is the probability that out of 12 such men at least 11 will reach their $51^{\text {st }}$ birthday?

OR

12. a) Earthquake occur in a region at an average rate of 5 per year according to a Poisson distribution. What is the probability that;
(i) No earthquake would occur next year?
(ii) No earthquake would occur in exactly two of the next five years?
b) Out of 1000 families with 4 children, how many would you expect
to have
(i) at least 1 boy
(ii) 1 or 2 girls
(iii) no girl.

MODULE II

13. a) Let X be a continuous random variable with mean $\mu=4.35$ and $\sigma=0.59$. If X follows normal distribution, find
(i) $P(4<X<5)$
(ii) $P(X>5.5)$
b) The amount of time that a surveillance camera run without having to be reset is a random variable having the exponential distribution with $\beta=50$ days. Find the probabilities that such a camera will
(i) have to be reset in less than 20 days
(ii) not have to be reset in at least 60 days.

OR

14. a) If a random variable X has probability density $f(x)=\left\{\begin{array}{c}2 e^{-2 x}, x>0 \\ 0, x \leq 0\end{array}\right.$, find the probability that it will take on a value;
(i) between 1 and 3
(ii) greater than 0.5
(iii) find the mean and variance of X.
b) In an intelligence test administrated on 1000 children, the average was 60 and standard deviation was 20 . Assuming that the marks obtained by the children follow normal distribution, find the number of children who have scored;
(i) over 90 marks
(ii) below 40 marks
(iii) between 50 and 80 marks.

MODULE III

15. a) A random process $X(t)$ is defined by $X(t)=2 \cos (5 t+\emptyset)$ where \emptyset is uniformly distributed in $[0,2 \pi]$. Find the mean, autocorrelation and autocovariance.
b) A random process $X(t)$ is defined by $X(t)=a \sin (\omega t+\emptyset)$ where a and w are constants and \emptyset is uniformly distributed in $[0,2 \pi]$. Show that $X(t)$ is WSS.

OR

16. a) Find the mean and autocorrelation of the sine wave process with random amplitude defined by $X(t)=A \sin \omega t$ where A is a random variable, uniformly distributed between 0 and 1 and ω is a constant.
b) Show that the process $X(t)=A \cos \lambda t+B \sin \lambda t$, where λ is a constant and A and B are random variables is WSS if
(i) $E(A)=E(B)=0$
(ii) $E\left(A^{2}\right)=E\left(B^{2}\right)$
(iii) $E(A B)=0$

MODULE IV

17. a) Use Newton-Raphson method to find a root of the equation $x^{3}-2 x-5=0$.
b) Using Newton's forward difference formula find the interpolating polynomial for the following data;

x	0	1	2	3
y	0	2	6	18

OR

18. a) Using Lagrange's formula, find the polynomial $p_{n}(x)$ for the following data.

x	1	3	4
y	1	27	64

b) Find the polynomial interpolating the following data using

Newton's backward interpolation formula.

x	3	4	5	6	7
y	7	11	16	22	29

MODULE V

19. a) Using Gauss-Seidel method, solve the following system of equations;

$$
\begin{gather*}
8 x_{1}+x_{2}+x_{3}=8 \\
2 x_{1}+4 x_{2}+x_{3}=4 \\
x_{1}+3 x_{2}+5 x_{3}=5 \tag{7}
\end{gather*}
$$

b) Fit a curve of the form $y=a+b x^{2}$ to the following data:

x	1	2	3	4	5	6
y	0.56	0.89	1.04	1.63	2.95	4.5

OR
20. a) Compute $y(0.5)$ from $\frac{d y}{d x}+y^{2}=0$, given $y(0)=1$ and $h=0.1$ using Euler method.
b) Find the value of y (1.1) using Runge - Kutta method of $4^{\text {th }}$ order, given that $\frac{d y}{d x}=y^{2}+x y, y(1)=1$, taking $h=0.1$.

