Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (S), AUGUST 2023 ELECTRICAL AND ELECTRONICS ENGINEERING

(2020 SCHEME)

- Course Code : 20EET206
- Course Name: Digital Electronics

.....

Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Convert the given hexadecimal number to binary numbers (i) 901(ii) 1000 (iii)1111111.001.
- 2. Draw the internal diagram of a TTL NAND Gate.
- 3. Realize the function (AB +BC + AC) using NOR gates only.
- 4. What is the significance of K-map in Digital Electronics?
- 5. What is the role of parity generators in modern day communication?
- 6. Differentiate multiplexer and de-multiplexer.
- 7. What is the significance of race-around condition?
- 8. Realize a T flip-flop using a JK flip-flop.
- 9. Differentiate SAR ADC and flash ADC.
- 10. Justify reconfigurable feature of a FPGA.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

- 11. a) Write notes on error detection codes, error correction codes and (9) BCD.
 - b) 1's compliment method of subtraction is not preferred. Justify. (5)

OR

- 12. a) With proper examples, justify the statement "NAND gates and NOR (9) gate are Universal gates".
 - b) Write short notes on IEEE floating point number system. (5)

MODULE II

- 13. a) Using K-Map, find the minimal POS expression if (10) Y = ABC' + A'B'C + A'B'C' + ABC.
 - b) Write any four Boolean laws used in Digital Electronics. (4)

527A1

D

OR

MODULE III				
	b)	Draw the diagram of a four-bit adder/subtractor.	(4)	
14.	a)	With the help of K-map, simplify A'B'C + A'BC' + ABC + AB'C'.	(10)	

15. a)Realize a 8:1 multiplexer using 4:1 multiplexers.(7)

b) Realize a 1:16 de-multiplexer using two 1:8 de-multiplexers. (7)

OR

16. Explain the significance of a BCD to Decimal decoder. With the help of (14) truth table and K-map, design a BCD to Decimal decoder.

MODULE IV

17.	a) b)	Design a Mod – 10 asynchronous Counter using JK Flip-flops. What do you mean by a Mod N counter? Brief how the counter resets the count to zero after completion of one full cycle of N counts.	(9) (5)			
OR						
18.	a) b)	With neat diagram, explain the working of a Johnson's counter. Differentiate SISO and SIPO registers. MODULE V	(9) (5)			
19.	a) b)	With suitable examples and diagrams, explain the working of R-2R ladder network DAC. Differentiate Moore and Mealy machines. OR	(9) (5)			
20.	a) b)	Write short notes about (i) PAL (ii) PLA and (iii) FPGA. Write a VHDL program for a full adder using Dataflow style of modeling.	(9) (5)			