Register No.:
Name
SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SIXTH SEMESTER B.TECH DEGREE EXAMINATION (S), AUGUST 2023 ELECTRICAL AND ELECTRONICS ENGINEERING (2020 SCHEME)
Course Code : 20EET308
Course Name : Comprehensive Course Work
Max. Marks : 50

Duration : 75 Minutes

PART A

(Answer all questions. Each question carries 1 mark)
1 In the given figure, A_{1}, A_{2} and A_{3} are ideal ammeters. If A_{2} and A_{3} read 3 A and 4 A , respectively, then A_{1} should read.

A. $\quad 1 \mathrm{~A}$
B.
5A
C. $\quad 7 \mathrm{~A}$
D.
4A

2 The impulse response of an RL circuit is a.......
A. Rising exponential
B.
function
C. Step function
D.
Decaying exponential function

The expression of current from the circuit (Fig 7) shown below is?

Fig 7
A. $\quad i=2\left(1-e^{-2 t}\right) \mathrm{A}$
B.
$\mathrm{i}=2\left(1+\mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{A}$
C. $\quad i=2\left(1+\mathrm{e}^{2 \mathrm{t}}\right) \mathrm{A}$
D.
$\mathrm{i}=2\left(1+\mathrm{e}^{2 \mathrm{t}}\right) \mathrm{A}$

Fig 5
A. 15
B.
20
C. 25
D.
30

5 In RC circuit, the time constant is the time it would take for an exponentially decaying parameter to reach a value equal to \qquad $\%$ of the initial value.
A. 37.69
B.
36.79
C. $\quad 39.76$
D.
37.96

6 Consider the circuit (Fig 8) shown below. The switch was in closed position for a long time. Find the voltage across capacitor at steady state.

Fig 8
A. 35 V
B.
10 V
C. 15 V
D.
25 V

7 An alternator supplying power to a load with a leading power factor always has \ldots voltage regulation
A. Positive
B.
C. Unity
D.
Negative

Transformer core lamination is made up of
A. Silicon Steel
B.
C. Cast steel
D.
Aluminium
A. Field control method
B.
C. Armature control
D. method
Ward Leonard system of speed control

10 Which test is performed to determine core loss at full load of a transformer.
A. Short circuit
B.
Sumpner's Test
C. Open Circuit
D.
Swinburn's Test

11 Starting torque of an Induction Motor will be maximum when its slip at
A. 0
B.
0.5
C. 1
D.
2

12 On the two sides of a star/delta transformer
A. Voltage and currents
B.
Voltage and currents both
are both in phase
C. Voltage differ by 30° but
D. differ in phase by 30° currents are in phase Currents differ in phase by 30° but voltages are in phase.
13 Which one of the following demultiplexers require only one select line?
A. 1 to 2 demultiplexer
B.
1 to 8 demultiplexer
C. 1 to 4 demultiplexer
D.
1 to 16 demultiplexer

14 In a T Flip flop the ratio of frequency of the input pulse to frequency of output pulse is
A. $1 / 2$
B.
1
C. 2
D.
3

15 Which one of the following follows the combinational logic type
A. Demultiplexer
B.
C. Both A, B
D.
Multiplexer
None

16 What is the octal equivalent of binary number 10111101?
A. 675
B.
275
C. 572
D. 573

17 What is the value of $\left(A+B^{\circ} C^{\prime}\right)$.
A. 0
C. A
B.
1
C. A
D.
ABC
$(A B+A B C)$

18 The binary addition of 1111 and 1011 is
A. 100010
B.
1010
C. 11010
D.
11110

19 The component which makes and breaks the contacts in a motor starter is
A. Circuit breaker
B.
Relay
C. Contactor
D.
Push Button

20 The maximum demand of a consumer is 2 kW and its daily energy consumption is 20 units. Then his load factor is
A. 10%
B.
41.6\%
C. 50%
D.
None of the above

21 Corona in DC supply is \qquad
A. zero
B.
Less than AC
C. Greater than AC
D.
Cannot be calculated

22 Percentage differential protection in a transformer is recommended to prevent maloperation due to
A. External fault currents
B.
Internal fault currents
C. Magnetizing currents
D.
None of the above

Ferranti effect on long overhead lines is experienced when it is:
A. On full load at 0.8 pf lag
C. Lightly loaded
B.
D.
On full load at upf
In all these cases

24 If the time of operation of a relay for unity TMS is 10 secs, the time of operation for 0.5 TMS will be
A. 5 secs
B.
20 secs
C. 10 secs
D.
None of the above

Which one of the following systems is causal
A. $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{x}(\mathrm{t}-3)+\mathrm{x}\left(\mathrm{t}^{2}\right)$
B.
C. $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}-1)+\mathrm{x}(\mathrm{t}-2)$
D.
$y(n)=x(n+2)$
$y(n)=x\left(2 n^{2}\right)$ frequency domain?
Fourier series, Fourier transform and Laplace transform only
A. Fourier series, Fourier
B.
Fourier series only transform, Laplace transform, Z-transform
C. Fourier series and Laplace transform only
D.

The range for unit step function for $u(t-a)$, is \qquad
A. $t<a$
B.
C. $t \geq a$
D.

$$
\mathrm{t} \leq \mathrm{a}
$$

What is the value of $\mathrm{d}[0]$, such that $\mathrm{d}[\mathrm{n}]$ is the unit impulse function?
A. 0
B.
0.5
C. 1.5
D.
1

Determine the nature of the system: $\mathrm{y}(\mathrm{t})=\mathrm{t}^{2} \mathrm{x}(\mathrm{t}-1)$
A. Linear, time invariant
B.
Linear, time variant
C. Non-linear, time
D.
Non-linear, time variant invariant

Discrete time signal is derived from continuous time signal by \qquad process.
A. Addition
B.
Multiplication
C. Sampling
D.
Addition and multiplication

PART B

(Answer all questions. Each question carries 2 marks)

A $20 \mu \mathrm{~F}$ capacitor in the RC circuit shown has an initial charge of $\mathrm{q} 0=500 \mu \mathrm{C}$ with the polarity as shown Fig 12 . The switch is closed at time $t=0$. Find the current transient.

$$
\begin{aligned}
& E=50 V \\
& R=1000 \Omega \\
& C=20 \mu \mathrm{~F}
\end{aligned}
$$

Fig 12
A. $50-75 \mathrm{e}-50 \mathrm{t}$
B.
0.075 e50 t A
C. 0.075 e-50 t A
D.
$50+75$ e- 50 t

32 The line A to neutral voltage is $10 \angle 15^{\circ}$ for a balanced three phase star-connected load with phase sequence $A B C$. The voltage of line B with respect to line C is given by
A. $10 \sqrt{ } 3 \angle 105^{\circ}$
B.
$10 \angle 105^{\circ}$
C. $-10 \sqrt{ } 3 \angle 75^{\circ}$
D.
$-10 \sqrt{ } 3 \angle 90^{\circ}$

33 A 3-phase induction motor draws 1000 kVA at a p.f. of 0.8 lag. A synchronous motor is connected in parallel to draw an additional 750 kVA at a power factor of 0.6 lead. The p.f. of the total load supplied by the mains is
A. Unity
B.
0.707 lead
C. 0.6 lag
D.
Zero

34 The volt per turn in the primary winding of a $1000 \mathrm{~V} / 250 \mathrm{~V} 50 \mathrm{~Hz}$, single phase transformer is 4 V . What is its secondary volt per turn?
A. 16 V
B.
8 V
C. 4 V
D.
1 V

35 The minimum number of 2-input NAND gates required to realize a full-adder/fullsubtractor is
A. 8
B.
10
C. 9
D.
12

36 The following hexadecimal number (1E.43) ${ }_{16}$ is equivalent to
A. $(36.506)_{8}$
B.
(36.206) ${ }_{8}$
C. $(35.506)_{8}$
D.
35.206) 8

37 A string insulator has 4 units. The voltage across the bottom most unit is 33.33% of total voltage. Its string efficiency is
A. 25%
B.
33.33\%
C. 66.66%
D.
75\%

38 A power system has a maximum load of 15 MW . Annual load factor is 50%. The reserve capacity of plant is \qquad if the plant capacity factor is 40%.
A. $\quad 3.75 \mathrm{MW}$
B.
7.75 MW
C. $\quad 46.75 \mathrm{MW}$
D.
8.75 MW

39 Find the final value of the function $\mathrm{F}(\mathrm{s})$ given by $(\mathrm{s}-1) /\left(\mathrm{s}\left(\mathrm{s}^{2}-1\right)\right)$
A. 1
B.
0
C. -1
D.
∞

Which of the following systems is time invariant?
A. $y(t)=x(2 t)+x(t)$
B.
$y(t)=x(t)+x(1-t)$
C. $y(t)=-x(t)+x(1-t)$
D.
$y(t)=x(t)+x(t-1)$

