Duration:4 Hours

Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SIXTH SEMESTER B.TECH DEGREE EXAMINATION (S), AUGUST 2023 CIVIL ENGINEERING

(2020 SCHEME)

Course Code: 20CET306

Course Name: Design of Hydraulic Structures

Max. Marks: 100

- Use of Khosla's chart, Blench curve and Montagues curve are permitted in the examination hall
- Assume suitable data wherever necessary.

PART A

(Answer any one full question from each module. Each question carries 15 marks)

MODULE I

1.	a)	What are the limitations of Bligh's creep theory?	(5)
		• • •	

b) Sketch the layout of diversion headworks, mark the components and describe the functions of each component. (10)

OR

2. a	a)	Explain any thr	ee different types	s of weirs wi	ith neat sketches.	(6)
------	----	-----------------	--------------------	---------------	--------------------	-----

b) Calculate the length of waterway, regime scour depth and the total energy level at the upstream of a vertical drop weir for the following data. Maximum flood discharge = 2600 cumecs
HFL before construction = 290.0 m (9)
Minimum water level = d/s bed level = 283.0 m
F.S.L of canal = 289.0 m
Allowable flux = 1.2 m and f=1

MODULE II

- a) Design an irrigation channel to carry a discharge of 5 cumecs. Assume N = 0.0225 and m = 1. The channel has a bed slope of (9) 0.2m per kilometer.
 - b) Explain Type I, Type II and Type III aqueducts with neat sketches. (6)

OR

a)	Explain the different types of canal falls with neat sketches.	(8)
b)	A regime channel has to be designed for the following data:	
	Discharge = 100 cumecs	(7)
	Silt factor, $f = 1.1$	

4

604A3

Assume side slopes of 0.5 horizontal to 1.0 vertical.

PART B

(Answer any one full question. Question carries 50 marks with 25 marks for design and 25 marks for drawing.)

MODULE III

5.	a)	Design a 2 metre trapezoidal notch fall for the following data:	
		Details of the canal above drop	
		Full supply discharge = 6 cumecs	
		Bed width = 6.00 m	
		Bed level = 12.00 m	
		Full supply depth = 1.50 m	
		Full supply level = 13.50 m	
		Top of bank 2.00 m wide at level 14.50 m	
		Half supply depth = 1.00 m	(05)
		Details of the canal below drop	(25)
		Full supply discharge = 6 cumecs	
		Bed width = 6.00 m	
		Bed level = 10.00 m	
		Full supply depth = 1.50 m	
		Full supply level = 11.50 m	
		Top of bank 2.00 m wide at level 12.50 m	
		Good soil for foundation is available at 9.50 m	
		Assume any other required data suitably.	
	b)	Prepare the following drawings (not to scale)	
		i) Half plan at top and half at the foundation level.	(25)
		ii) Section across the channel through the notch fall.	
		OR	
6.	a)	Design a suitable cross drainage work for the following	
)	hydraulic particulars:	
		Discharge of the canal = 33 cumecs	
		Bed width of the canal = $20m$	
		Depth of water in the canal = 1.6m	
		Bed level of canal = 250.00m	(25)
		High flood discharge of the drainage = 400 cumecs	
		High flood level of drainage = 253.00m	
		Bed level of drainage = 248.00m	
		General ground level = 250.00m	
	b)	Prepare the following drawings (not to scale)	
	,	(i) Half plan at top and half at the foundation level.	(25)
		(ii) Longitudinal section along drain.	. ,

604A3

PART C

(Answer any one full question from each module. Each question carries 10 marks)

MODULE IV

7.	a)	What are the steps involved in the stability analysis of a gravity dam using analytical method?	(5)
	b)	List the different types of galleries. Explain any one in detail.	(5)
		OR	
8.	a) b)	What are the functions of shafts and keys in a gravity dam? Explain the grouting of foundation in detail.	(5) (5)
		MODULE V	
9.	a)	What are the causes leading to the structural failure of an earth dam? Explain.	(5)
	b)	Sketch the layout of a Type I stilling basin and explain its components.	(5)
		OR	
10.	a) b)	What are the limitations of thin cylinder theory? Explain the working of a shaft spillway with a neat sketch.	(5) (5)