Reg No : Name 1

B.A DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, MAY 2023

Second Semester

B.A Corporate Economics Model III

Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II

2017 ADMISSION ONWARDS

0BF1B122

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- Find the derivative of $(x^2+1)(x+3)$ 1.
- $_{
 m lf}$ $xy=c^2$ find ${dy\over dx}$ 2.

If $y = e^{2x}$ find y_2 3.

- 4. Distinguish between assignment and transportation problems.
- 5. What are unbalanced assignment problems?
- 6. Define basic feasible solution in transportation problem.
- Write a short note on Vogel's method. 7.
- What are unbalanced problems? 8.
- 9.

Find the rank of the matrix
$$\begin{pmatrix} 5 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 1 & 0 \end{pmatrix}$$

- 10. Define singular and non singular matrix.
- 11. Define subset of a set.
- 12. What do you mean by complement of a set?

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

13.
$$2x^2 + 3x + 5$$

Find the derivative of \sqrt{x}

Find the derivative of

14.

$$_{
m lf} \quad x^3+y^3=a^3 \quad {
m find} \ {dy\over dx}$$

15. Solve the assignment problem

	1	2	3	4
A	10	12	19	11
В	5	10	7	8
С	12	14	13	11
D	8	15	11	9

16. Find the initial feasible solution to the transportation problem given below by North west corner rule .

	Α	В	С	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
	4	3	6	2	5
Demand	6	10	15	4	

17. Explain elementary transformations.

18.

Find the inverse of the matrix
$$egin{pmatrix} 2 & -3 \ 4 & -1 \end{pmatrix}$$

- 19. Explain subset and superset.
- 20. Represent $(A^c \cap B^c)$ using venn diagram.
- 21. If A={2,3,5,8}, B={1,2,3,4},C={1,3,5,7,8} find

 $(A imes B) \cap (B imes C)$

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

22.
$$\displaystyle rac{(3x+1)(x-2)}{(x-1)(3x+2)}$$

23. Five different machines can do any of the five required jobs with different profits resulting from each assignment as shown below.

	A	В	С	D	E
1	30	37	40	28	40
2	40	24	27	21	36
3	40	32	33	30	35
4	25	38	40	36	36
5	29	62	41	34	39

24. Find the initial feasible solution to the transportation problem using lowest cost entry method.

		Α	В	С	D	Supply
	I	6	4	1	5	14
	II	8	9	2	7	16
		4	3	6	2	5
	Demand	6	10	15	4	
25.	Reduce the matrix	$\begin{pmatrix} 1\\ 3\\ -\end{pmatrix}$	3 4	$\begin{array}{c} 0\\ 1\\ 3\end{array}$	2 5	

(2×15=30)