Reg No :
Name $:$

B.A DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, MAY 2023
 Second Semester
 B.A Corporate Economics Model III

 Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II

 Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II 2017 ADMISSION ONWARDS 2017 ADMISSION ONWARDS

 0BF1B122

 0BF1B122}

Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Find the derivative of $\left(x^{2}+1\right)(x+3)$
2.

If $\quad x y=c^{2}$ find $\frac{d y}{d x}$
3. If $\mathrm{y}=e^{2 x}$ find y_{2}.
4. Distinguish between assignment and transportation problems.
5. What are unbalanced assignment problems?
6. Define basic feasible solution in transportation problem.
7. Write a short note on Vogel's method.
8. What are unbalanced problems?
9.
$\left(\begin{array}{lll}5 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 1 & 0\end{array}\right)$
10. Define singular and non singular matrix.
11. Define subset of a set.
12. What do you mean by complement of a set?

Part B

Answer any six questions.
Each question carries 5 marks.
13.

$$
\frac{2 x^{2}+3 x+5}{\sqrt{x}}
$$

14.

$$
\text { If } \quad x^{3}+y^{3}=a^{3} \quad \text { find } \frac{d y}{d x}
$$

15. Solve the assignment problem

	1	2	3	4
A	10	12	19	11
B	5	10	7	8
C	12	14	13	11
D	8	15	11	9

16. Find the initial feasible solution to the transportation problem given below by North west corner rule .

	A	B	C	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
III	4	3	6	2	5
Demand	6	10	15	4	

17. Explain elementary transformations.
18.

Find the inverse of the matrix $\left(\begin{array}{cc}2 & -3 \\ 4 & -1\end{array}\right)$
19. Explain subset and superset.
20. Represent $\left(A^{c} \cap B^{c}\right)$ using venn diagram.
21. If $\mathrm{A}=\{2,3,5,8\}, \mathrm{B}=\{1,2,3,4\}, \mathrm{C}=\{1,3,5,7,8\}$ find $(A \times B) \cap(B \times C)$

Part C

Answer any two questions.
Each question carries 15 marks.
22.

Differentiate $\frac{(3 x+1)(x-2)}{(x-1)(3 x+2)}$
23. Five different machines can do any of the five required jobs with different profits resulting from each assignment as shown below.

	A	B	C	D	E
1	30	37	40	28	40
2	40	24	27	21	36
3	40	32	33	30	35
4	25	38	40	36	36
5	29	62	41	34	39

24. Find the initial feasible solution to the transportation problem using lowest cost entry method.

	A	B	C	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
III	4	3	6	2	5
Demand	6	10	15	4	

25.

Reduce the matrix $\left(\begin{array}{cccc}1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5\end{array}\right) \quad$ into canonical form.

