SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SIXTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023 ELECTRONICS AND COMMUNICATION ENGINEERING
 (2020 SCHEME)

Course Code : 20ECT308

Course Name : Comprehensive Course Work
Max. Marks :50
Duration : 75 Minutes
PART A
(Answer all questions. Each question carries 1 mark)

For a full wave rectifier, with sinusoidal input and inductor as filter, ripple factor for maximum load current and minimum load current conditions are respectively
A. 0.1 and 1
B. 0.1 and 0.47
C. 0 and 0.47
D. 0 and 0.22

An amplifier has a power gain of 100 . Its db gain is
A. 10 dB
B. 20 dB
C. 40 dB
D. 0 dB

The voltage gain of an amplifier is 100. A negative feedback is applied with $\beta=0.03$. The overall gain of the amplifier
A. 70
B. 25
C. 99.97
D. 3

The voltage gain of an amplifier without feedback and with negative feedback respectively is 100 and 20 . The percentage of negative (β) would be
A. 4%
B. 5%
C. 20%
D. 80%
A. 8.70 V
B. 4.35 V
C. 2.9 V
D. 0.70 V

An oscillator employs feedback
A. Positive
B. Negative
C. Neither positive nor negative
D. Data insufficient

A full adder can be made out of \qquad
A. two half adders
B. two half adders and a OR gate
C. two half adders and a NOT gate
D. three half adders

For Emitter Coupled Logic (ECL), the switching speed is very high because
A. Negative logic is used
B. The transistors are not saturated when they are conducting
C. Multi emitter transistors are
D. Low fan out used

The product of which of the following gives the figure of merit of a logic family?
A. Gain and bandwidth
B. Propagation delay time and power dissipation
C. Fan-out and propagation delay time
D. Noise margin and power dissipation
The 2's complement representation of -17 is
A. 100001
B. 101111
C. 110011
D. 101110

A digital circuit that can store only one bit is a
A.
B. NOR gate
Register
C. Flip-flop
D. XOR gate

Which logic family is the fastest?
A. DTL
B. CMOS
C. TTL
D. ECL

For a given op-amp, CMRR $=10^{5}$ and differential gain $=10^{5}$. What is the common mode gain of the op-amp?
A. infinity
B. 10^{5}
C. 2×10^{5}
D. 1

In a circuit, if the open loop gain is 10^{6} and output voltage is 10 V , the differential voltage should be
A. $\quad 10 \mu \mathrm{v}$
B. 0.1 v
C. $100 \mu \mathrm{v}$
D. $1 \mu \mathrm{v}$

How many bits will a D/A converter use so that its full scale output voltage is 5 V and its resolution is at the most 10 mV
A. 5
B. 7
C. 9
D. 11

The large signal bandwidth of an op-amp is limited by its
A. CMRR
B. Slew rate
C. Gain-bandwidth product
D. Input impedance

A $1 \mu \mathrm{~s}$ pulse can be stretched into a 1 ms pulse by using
A. A mono stable multi vibrator
B. An astable multi vibrator
C. A bistable multi vibrator
D. A JK flip flop

Which one of the following circuits is used for converting a sine wave into a square wave?
A. Astable multi vibrators
B. Mono stable multi vibrators
C. Bistable multi vibrators
D. Schmitt trigger

For an N point FFT algorithm with $\mathrm{N}=2^{m}$, which one of the following statement is true?
A. It is not possible to construct a
B. The number of butterflies in the signal flow graph with both input $m^{\text {th }}$ stage is N / m and output in normal order
C. In-place computation requires storage of only 2 N node data
D. Computation of a butterfly requires only one complex multiplication
The transformation technique in which there is one to one mapping from sdomain to z-domain is
A. Approximation of derivatives
B. Impulse invariance method.
C. Bilinear transformation method
D. Backward difference for the derivative
Which of the following methods are used to convert analog filter into digital filter?
A. Approximation of Derivatives
B. Bilinear transformation
C. Impulse invariance
D. All of the mentioned What is the process of increasing the sampling rate by a factor I?
A. Sampling rate conversion
B. Decimation
C. Interpolation
D. None of the mentioned

A digital filter is said to be an IIR if:
A. It oscillates
B. All its poles lies outside unit circle
C. Present output depends on
D. One or more denominator coefficient is zero
What is another term used for time scaling operation in digital signal processing?
A. Upsampling
B. Downsampling
C. Convolution
D. Quantisation

A communication channel disturbed by Gaussian noise has a bandwidth of 6 kHz and S / N ratio of 15 . The maximum transmission rate that such a channel can support is
A. $2.4 \mathrm{kbits} / \mathrm{sec}$
B. 24 kbits/sec
C. $32 \mathrm{kbits} / \mathrm{sec}$
D. $48 \mathrm{kbits} / \mathrm{sec}$

If the modulating frequency of a carrier wave varies between 700 Hz and 7 KHz , find its bandwidth?
A. 10 KHz
B. 23 KHz
C. $\quad 17.3 \mathrm{KHz}$
D. $\quad 12.6 \mathrm{KHz}$

The minimum bandwidth of the link needed for a guard band of 10 kHz frequency to prevent interference between six channels, each with 100 kHz frequency is
A. 425 kHz
B. 575 kHz
C. 650 kHz
D. 725 kHz

If we correlate the received signal with any one of the two orthogonal function, the obtained inner product will be
A. In phase
B. Quadrature
C. Zero
D. Cannot be determined

In delta modulation, the slope overload distortion can be reduced by
A. Decreasing the step size
B. Decreasing the granular noise
C. Decreasing the sampling rate
D. Increasing the step size
The probability cumulative distribution function must be monotone and
A. increasing
B. decreasing
C. Non decreasing
D. Non increasing

PART B

(Answer all questions. Each question carries 2 marks)
The total gain of a multistage amplifier is less than the product of the gains of individual stages due to \qquad
A. Power loss in the coupling device
B. Loading effect of the next stage
C. The use of many transistors
D. The use of many capacitors

The two stages of a cascade amplifier have individual upper cut-off frequencies $\mathrm{f} 1=5 \mathrm{MHz}$ and $\mathrm{f} 2=3.33 \mathrm{MHz}$. What is the best approximation for the upper cut-off frequency in cascade combination?
A. 4.16 MHz
B. 3.33 MHz
C. 2.5 MHz
D. 5 MHz

A 4 bit ripple counter and a 4 bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst-case delay in the ripple counter and the synchronous counter be R and S respectively, then
A. $\mathrm{R}=10 \mathrm{~ns}, \mathrm{~S}=40 \mathrm{~ns}$
B. $R=40 \mathrm{~ns}, \mathrm{~S}=10 \mathrm{~ns}$
C. $\mathrm{R}=10 \mathrm{~ns}, \mathrm{~S}=30 \mathrm{~ns}$
D. $R=30 \mathrm{~ns}, \mathrm{~S}=10 \mathrm{~ns}$

The circuit of the given figure realizes the function \qquad

A.

$$
Y=(\bar{A}+\bar{B}) C+\overline{D E}
$$

B.
$Y=\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}$
C.
D. $A B+C(D+E)$

$$
A B+C+D E
$$

The frequency of oscillation of astable multivibrator with component values $R_{1}=$ $2 K \Omega \quad R_{2}=20 K \Omega \quad C_{1}=0.01 \mu F, C_{2}=0.05 \mu F$ is
A. $\quad 1428.5 \mathrm{~Hz}$
B. $\quad 142.85 \mathrm{~Hz}$
C. $\quad 14.285 \mathrm{~Hz}$
D. $\quad 1.4285 \mathrm{~Hz}$

What is the maximum frequency for sine wave output voltage of 10 v peak with an Op-amp whose slew rate is $1 \mathrm{~V} / \mu$ s?
A. 15.92 kHz
B. $\quad 19.73 \mathrm{kHz}$
C. 23.54 kHz
D. 27.336 kHz

What is the folding frequency for the aliased version of $x(n)$ with sampling rate F?
A. F / D
B. $F / 4 D$
C. $\mathrm{F} / 2$
D. $\mathrm{F} / 2 \mathrm{D}$

The 4-point Discrete Fourier Transform (DFT) of a discrete time sequence $\{1,0,2.3\}$ is
A. $[0,-2+2 \mathrm{j}, 2,-2-2 \mathrm{j}]$
B. $[2,2+2 \mathrm{j}, 6,2-2 \mathrm{j}]$
C. $[6,1-3 \mathrm{j}, 2,1+3 \mathrm{j}]$
D. $[6,-1+3 \mathrm{j}, 0,-1-3 \mathrm{j}]$

In Delta modulation \qquad
A. all the coded bits used for
B. one bit per sample is transmitted sampling are transmitted
C. the step size is fixed
D. Both A \& B

A bandwidth of 10 kHz is required for AM system. If the lowest frequency component in the modulated signal is 555 kHz , carrier frequency in kHz is
A. 525
B. 550
C. 560
D. 565

