Register No.: Name
SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)
(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SIXTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023 ELECTRICAL AND ELECTRONICS ENGINEERING (2020 SCHEME)

Course Code : 20EET308

Course Name : Comprehensive Course Work

Max. Marks : 50

Duration : 75 Minutes

PART A
(Answer all questions. Each question carries 1 mark)
1 The impulse response of an RL circuit is a.......
A. Rising exponential
B.
Decaying exponential
function function
C. Step function
D. parabolic function
2 The maximum power that can be transferred to the load resistor RL from the voltage source in Fig 4 is

Fig 4
A. 1 W
B.
10 W
C. $\quad 0.25 \mathrm{~W}$
D.
0.5 W

3 The rated voltage of a three-phase power system is given as
A. rms phase voltage
B.
C. rms line to line voltage
D.
Peak phase voltage

For the given information $Z 11=3, Z 12=1, Z 21=2, Z 22=1$. Find the value of Y21.
A. 2
B.
-2
C. 1
D.
-1

5 Norton's theorem states that a complex network connected to a load can be replaced with an equivalent impedance
A. In series with current
B.
In parallel with a source
C. In series with a voltage source
D. voltage source In parallel with a current source

6 A network contains linear resistors which are connected in series across an ideal voltage source. If all the resistances are halved and the voltage is doubled then the voltage across each resistor becomes.
A. Doubled
B.
C. Not changed
D.

7 An alternator supplying power to a load with a leading power factor always has A. voltage regulation
A. Positive
B.
C. Unity
D.
Negative
zero

In an autotransormer, power from
A. Inductively
B.
C. Both A and B
D.
Conductively
None of the above
A. 0
B.
0.5
C. 1
D.
2
A. Load current only
B.
Power factor only
C. Both load current and
D.
None of the above pf

11 The rotor windings of Induction motors are skewed to. \qquad
A. Rising exponential
B.
Decaying exponential function function
C. Step function
D.
parabolic function

12 When the rotor of a three phase induction motor is blocked, the slip is \qquad
A. 0
B.
0.5
C. 0.1
D.
1

13 The advantage of using a dual slope ADC in a digital Voltmeter is that
A. Its accuracy is high
B.
Its conversion time is small
C. Its gain output in BCD
D.
It does not require a comparator

Which one of the following follows the combinational logic type
A. Demultiplexer
B.
C. Both A,B
D.
Multiplexer
None

15 Which of the following is NOT a combinational circuit?
A. Multiplexer
B.
Decoder
C. Flip-flop
D.
Encoder

16 Using which of the following decimal digit can be converted into the binary format?
A. Multiplexer
B.
C. Flip-flop
D.
Decoder
Encoder

17 A gate in which all inputs must be low to get a high output is called a/an
A. NAND
B.
NOR
C. AND
D.
XOR

18 Race round condition can be avoided in digital logic circuits using
A. Shift registers
B.
C. Master slave JK FF
D.
Full adder
AND gates

19 Which one of the following law is helpful to determine the most economical size of the electric power transmission line conductor ?
A. Ohms Law
B.
C. Faradays Law
D.
Kirchoff's Laws
Kelvin's Law

20 The connected load of a consumer is 2 kW and its maximum demand is 1.5 kW . The load factor of the consumer is
A. 0.75
B.
0.375
C. 1.33
D.
None of the above

21 The surge impedance of 50 miles long underground cable is 25 ohms. For a 25 miles long length it will be:
A. $\quad 12.5$ ohms
B.
C. 50 ohms
D.
25 ohms
None of the above

22 In case of a HVDC system, there is
A. Charging current but
B. no skin effect
C. Neither charging current
D.
nor skin effect
No charging current but skin effect Both charging current and skin effect

23 If the time of operation of a relay for unity TMS is 10 secs, the time of operation for 0.5 TMS will be
A. 5 secs
B.
C. 10 secs
D.
20 secs

Transmission lines are transposed to
A. Reduce copper loss
B.
C. Prevent interference
D.
Reduce skin effect
with the neighbouring telephone lines
25 Determine the nature of the system: $\mathrm{y}(\mathrm{t})=\mathrm{t}^{2} \mathrm{x}(\mathrm{t}-1)$
A. Linear, time invariant
B.
C. Non-linear, time
D.
Linear, time variant invariant

Sinusoidal signals multiplied by decaying exponentials are referred to as
A. Amplified sinusoids
B.
C. Buffered sinusoids
D.
Neutralised sinusoids
Damped sinusoids

27 Find the Z-transform of $x(n)=u(-n-2)$.
A.
B.
$\frac{z^{2}}{1-z}$
C.
$\frac{z^{2}}{z-1}$
D.

$$
\frac{z^{2}}{2-z}
$$

28 Discrete time signal is derived from continuous time signal by \qquad process.
A. Addition
B.
C. Sampling
D.
Multiplication
Addition and
multiplication

29 Find the Fourier transform of an exponential signal $f(t)=e^{-a t} u(t)$, $a>0$.
A. $\frac{1}{a+j w}$
B.
$\frac{1}{a-j w}$
C. $\frac{1}{-a+j w}$
D.

$$
\frac{1}{-a-j w}
$$

30 What is the consequence of marginally stable systems?
A. The system will turn out to be critically damped
C. It will be a damped system
B.
The system will be an overdamped system
D.
Purely oscillatory system

PART B

(Answer all questions. Each question carries 2 marks)

31 The magnitude of current (in mA) through the resistor R2 in the Fig 10 shown is \qquad .

Fig 10
A. 3.3 Ma
B.
1.8 mA
C. 0.2 mA
D.
2.8 mA

In a 3-phase system, $\mathrm{V}_{\mathrm{YN}}=100<-120^{\circ} \mathrm{V}$ and $\mathrm{V}_{\mathrm{BN}}=100<120^{\circ} \mathrm{V}$. Then V_{YB} will be
A. $170<90^{\circ} \mathrm{V}$
B.
$173<-90^{\circ} \mathrm{V}$
C. $200<60^{\circ} \mathrm{V}$
D.
$100<90^{\circ} \mathrm{V}$

33 A 220 V DC machine has an armature resistance of 1Ω. If the full load current is 20 A , the difference in the induced voltage when the machine is running as a motor, and as a generator is
A. 20 V
B.
OV
C. 40 V
D.
50 V

34 A 3-phase induction motor draws 1000 kVA at a p.f. of 0.8 lag. A synchronous motor is connected in parallel to draw an additional 750 kVA at a power factor of 0.6 lead. The p.f. of the total load supplied by the mains is.
A. Unity
B.
C. 0.6 lag
D.
0.707 lead
Zero

The current state QA QB of a two JK flip-flop system is 00 . Assume that the clock rise-time is much smaller than the delay of the JK flip-flop. The next state of the system is

A. 00
B.
01
C. 11
D.
10

36 The minimum number of 2-input NAND gates required to realize a full-adder/full-subtractor is
A. 8
B.
10
C. 9
D.
12

37 A generating station has a connected load of 50 MW and a maximum demand of 20 MW . No. of units generated is 60 MWhr for the year. What is the demand factor?
A. 0.33
B.
0.4
C. 2.5
D.
3

38 A power system has a maximum load of 15 MW . Annual load factor is 50%. The reserve capacity of plant is \qquad if the plant capacity factor is 40%.
A. 3.75 MW
B.
7.75 MW
C. $\quad 46.75 \mathrm{MW}$
D.
8.75 MW

A periodic function $f(t)$, with a period of 2π, is represented as its Fourier series

$$
f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} b_{n} \sin n t .
$$

$$
\text { If } f(t)=\left\{\begin{array}{c}
A \sin t, o \leq t \leq \pi \\
0, \pi \leq t \leq 2 \pi
\end{array}\right.
$$

the Fourier series coefficients a_{1} and b_{1} of $f(t)$ are,
A. $a_{1}=0 ; b_{1}=\mathrm{A} / \pi$
B.
$\mathrm{a}_{1}=\frac{\mathrm{A}}{2} ; \mathrm{b}_{1}=0$
C. $a_{1}=0 ; b_{1}=\frac{A}{2}$
D.
$\mathrm{a}_{1}=\frac{\AA}{\pi} ; \mathrm{b}_{1}=0$

How far does the memory of the given system $y[n]=1 / 2\{x[n]+x[n-1]\}$ extend into past?
A. Two time unit
B.
One time unit
C. Three time unit
D.
Not predictable

