946A1

F

Reg	ister I	No.:	Name :		
		SAINTGITS COLLEGE	OF ENGINEERING (AU	TONOMOUS)	
	(A)	FFILIATED TO APJ ABDUI THIRU	/ KALAM TECHNOLOGI VANANTHAPURAM)	CAL UNIVERSITY,	
	SI	XTH SEMESTER B.TECH	DEGREE EXAMINATIO	ON (R), MAY 2023	
		ELECTRICAL AND	ELECTRONICS ENGIN	IEERING	
		(2	020 SCHEME)		
Cou	rse C	ode : 20EET308			
Cοι	irse N	lame : Comprehensive Co	ourse Work		
Maz	. Mai	rks : 50		Duration : 75 Minutes	
			PART A		
		(Answer all question	s. Each question carri	es 1 mark)	
1	The i	mpulse response of an RL	circuit is a		
	А.	Rising exponential	В.	Decaying exponential	
		function		function	
	С.	Step function	D.	parabolic function	
2	The	e maximum power that can	be transferred to the lo	ad resistor RL from the	
	volt	age source in Fig 4 is			
		1000 			
		+			
	2				
		- 01 ¹¹			
	Fig	4			
	A .	1 W	В.	10 W	
	С.	0.25 W	D.	0.5 W	
3	The 1	rated voltage of a three-pha	ase power system is give	en as	
	A .	rms phase voltage	В.	Peak phase voltage	
	C .	rms line to line voltage	D.	Peak line to line voltage	
4	For	the given information Z11	= 3, Z12 = 1, Z21 = 2, Z	Z22 = 1. Find the value	
	of Y	21.	-	2	
	A.	2	B.	-2	
-	C.		D.	-1	
5	replaced with an equivalent impedance				
	A .	In series with current	B .	In parallel with a	
		source		voltage source	
	С.	In series with a voltage	D.	In parallel with a	
		source		current source	
6	A network contains linear resistors which are connected in series across an				
	ideal voltage source. If all the resistances are halved and the voltage is doubled				
	unen ▲	Doubled		Halved	
	C.	Not changed	<u>_</u> . D.	None of the above	
		0			

7	An alternator supplying power to a load with a leading power factor always has						
	A .	Positive	В.	Negative			
	С.	Unity	D.	zero			
8	In an	In an autotransformer, power from the primary is transferred to the secondary.					
	A .	Inductively	B.	Conductively			
	C .	Both A and B	D.	None of the above			
9	Starting torque of an Induction Motor will be maximum when its slip at						
	А.	0	В.	0.5			
	С.	1	D.	2			
10	The voltage regulation of an alternator depends on						
	A .	Load current only	В.	Power factor only			
	С.	Both load current and pf	D.	None of the above			
11	The 1	cotor windings of Induction	n motors are skewed to.	•••••			
	А.	Rising exponential	В.	Decaying exponential			
		function		function			
	C .	Step function	D.	parabolic function			
12	When	n the rotor of a three phase	e induction motor is blo	cked, the slip is			
	A .	0	В.	0.5			
	С.	0.1	D.	1			
13	The	e advantage of using a dua	l slope ADC in a digital	Voltmeter is that			
	Α.	Its accuracy is high	В.	Its conversion time is small			
	C.	Its gain output in BCD form	D.	It does not require a comparator			
14	Wh	ich one of the following fol	lows the combinational	logic type			
	Α.	Demultiplexer	В.	Multiplexer			
	С.	Both A,B	D.	None			
15	Wh	ich of the following is NOT	a combinational circuit	t?			
	Α.	Multiplexer	В.	Decoder			
	C .	Flip-flop	D.	Encoder			
16	Using which of the following decimal digit can be converted into the binary format?						
	А.	Multiplexer	В.	Decoder			
	С.	Flip-flop	D.	Encoder			
17	A gate in which all inputs must be low to get a high output is called a/an						
	A.	NAND	В.	NOR			
10	C .	AND	D.	XOR			
18	Rac	ce round condition can be	avoided in digital logic (Dircuits using			
	A.	Sniit registers	в.	Full adder			
	С.	Master slave JK FF		AND gates			
19	Which one of the following law is helpful to determine the most economical size of the electric power transmission line conductor ?						
	А.	Ohms Law	В.	Kirchoff's Laws			
	С.	Faradays Law	D.	Kelvin's Law			

20	The connected load of a consumer is 2kW and its maximum demand is 1.5kW. The load factor of the consumer is				
	A . 0.75	B.	0.375		
	C . 1.33	D.	None of the above		
21	The surge impedance of 50 m	viles long underground	cable is 25 obms. For a		
41	25 miles long length it will be				
	A. 12.5 ohms	В.	25 ohms		
	C. 50 ohms	D.	None of the above		
22	In case of a HVDC system, th	iere is			
	A. Charging current but no skin effect	В.	No charging current but skin effect		
	C. Neither charging current nor skin effect	D.	Both charging current and skin effect		
23	If the time of operation of a relay for unity TMS is 10 secs, the time of operation for 0.5 TMS will be				
	A. 5 secs	В.	20 secs		
	C. 10 secs	D.	None of the above		
24	Transmission lines are transp	posed to			
	A. Reduce copper loss	В.	Reduce skin effect		
	C. Prevent interference	D.	Prevent short circuit		
	with the neighbouring		between any two lines		
	telephone lines		y i i j		
25	Determine the nature of the system: $y(t) = t^2 x(t-1)$				
	A. Linear, time invariant	В.	Linear, time variant		
	C. Non-linear, time invariant	D.	Non-linear, time variant		
26	Sinusoidal signals multiplied	d by decaying exponenti	als are referred to as		
	A. Amplified sinusoids	В.	Neutralised sinusoids		
	C. Buffered sinusoids	D.	Damped sinusoids		
27	Find the Z-transform of $x(n)$ =	= u(-n-2).	-		
	A. z^2	В.	z^2		
	$\overline{z-1}$	_	$\overline{1-z}$		
	C. $\frac{z^2}{1+z}$	D.	$\frac{Z^2}{2\pi}$		
28	Discrete time signal is derived from continuous time signal by				
	A. Addition	B.	Multiplication		
	C. Sampling	D.	Addition and		
	••• Sampling	21	multiplication		
29	Find the Fourier transform of an exponential signal $f(t) = e^{-at} u(t)$, a>0.				
	A. 1	В.	1		
	$\overline{a+jw}$		a-jw		
	C . 1	D.	1		
	-a+jw	_•	$\overline{-a - iw}$		
			J · ·		

What is the consequence of marginally stable systems? 30

- The system will turn The system will be an Α. В. out to be critically overdamped system damped D.
- **C**. It will be a damped system

Purely oscillatory system

PART B

(Answer all questions. Each question carries 2 marks)

The magnitude of current (in mA) through the resistor R2 in the Fig 10 shown 31 is .

Fig 10

- **A.** 3.3 Ma В. 1.8 mA **C.** 0.2 mA D. 2.8 mA
- 32 In a 3-phase system, $V_{YN} = 100 < -120^{\circ}$ V and $V_{BN} = 100 < 120^{\circ}$ V. Then V_{YB} will be
 - 170<90° V Α. В. 173<-90° V
 - **C**. 200<60° V D. 100<90° V
- 33 A 220V DC machine has an armature resistance of 1Ω . If the full load current is 20A, the difference in the induced voltage when the machine is running as a motor, and as a generator is.....
 - **A.** 20V В. 0V **C.** 40V D. 50V
- A 3-phase induction motor draws 1000kVA at a p.f. of 0.8 lag. A synchronous 34 motor is connected in parallel to draw an additional 750kVA at a power factor of 0.6 lead. The p.f. of the total load supplied by the mains is..... **A.** Unity В. 0.707 lead Zero
 - **C.** 0.6 lag D.

35 The current state QA QB of a two JK flip-flop system is 00. Assume that the clock rise-time is much smaller than the delay of the JK flip-flop. The next state of the system is

5 V				
L	Q _A J Q _B			
К	р <u>а</u> , к.			
A. 00	B.	01		
C. 11	D.	10		
The minimum nur adder/full-subtrac	nber of 2-input NAND gate stor is	es required to realize a full-		
A. 8	В.	10		
C. 9	D.	12		
A generating static of 20 MW. No. of u demand factor?	n has a connected load of nits generated is 60 MWh	f 50 MW and a maximum demand or for the year. What is the		
A. 0.33	В.	0.4		
2.5	D.	3		
power system has a maximum load of 15 MW. Annual load factor is 50%.				
Ine reserve capaci	ty of plant is if the p	plant capacity factor is 40% .		
$\mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} = $	В.	7.75 WW		
6.75 MW	D.	8.75 MW		
A periodic function	1 I(t), with a period of 2π ,	is represented as its Fourier serie		

 $f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos nt + \sum_{n=1}^{\infty} b_n \sin nt$.

$$If f(t) = \begin{cases} A \ sint, o \le t \le \pi \\ 0, \pi \le t \le 2\pi \end{cases}$$

the Fourier series coefficients a_1 and b_1 of f(t) are,

A.
$$a_1 = 0; b_1 = A/\pi$$
B. $a_1 = \frac{A}{2}; b_1 = 0$ C. $a_1 = 0; b_1 = \frac{A}{2}$ D. $a_1 = \frac{A}{\pi}; b_1 = 0$

40 How far does the memory of the given system $y[n]=1/2\{x[n]+x[n-1]\}$ extend into past?

- **A.** Two time unit **B.** One time unit
- **C.** Three time unit **D.** Not predictable