Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023

CHEMICAL ENGINEERING (2020 SCHEME)

Course Code : 20CHT206

Course Name: Particle Technology

Max. Marks : 100

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define the term sphericity. Prove that the sphericity of cube is $(\pi/6)^{1/3}$.
- 2. Name and explain the working of the screen used for sizing the construction gravel and crushed stone.
- 3. With the help of a schematic, explain the working of rake classifier.
- 4. List out the assumptions used in Kynch theory.
- 5. Explain the three basic laws of comminution with appropriate equations.
- 6. Differentiate between open and closed circuit grinding with the help of a neat sketch.
- 7. Write a brief note on filter media and filter aids.
- 8. What is the principle of filtration and list the different factors affecting the rate of filtration.
- 9. Explain the different types of storage for solids.
- 10. Write a brief note on ribbon blender.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

- 11. a) Briefly explain the following methods of particle size analysis. (7)
 - i) Pipette analysis
 - ii) Beaker decantation
 - b) The product obtained from a chemical production company is used (7) as a feed for catalyst manufacturing. The product has a density of 1.3 g/cc and a sphericity of 0.5. The size analysis is as follows.

Size range (µm)	-704+352	-352+176	-176+88	-88+44	Pan
Mass of the particle in the range (g)	25	37.5	62.5	75	50

Duration: 3 Hours

D

(7)

Find the specific surface area and Sauter mean diameter of the material.

OR

- 12. a) Define and explain the effectiveness of screen. Derive the equation (7) used to calculate the effectiveness.
 - b) A quartz mixture is screened through a 10-mesh screen. The (7) cumulative screen analysis of the feed, overflow, and underflow are given in the following table.

Mesh	D _p , mm	Cumulative mass fraction greater		
		than D _p		
		Feed	Overflow	Underflow
4	4.699	0	0	0
8	2.362	0.15	0.43	0
10	1.651	0.47	0.85	0.195
28	0.589	0.94	1.00	0.91
65	0.208	0.98	-	0.975
Pan	-	1.00	-	1.00

Calculate the mass ratios of overflow to feed and underflow to feed. Also calculate the overall effectiveness of the screen.

MODULE II

- 13. a) With an appropriate sketch, explain how the particle separation (7) take place in jigging.
 - b) Describe the principle, mechanism and working of a froth floatation (7) cell.

OR

- 14. a) Explain the steps involved in the design of thickener.
 - b) A slurry containing 5 kg of water/kg of solids is to be thickened to a (7) sludge containing 1.5 kg of water/kg of solids in a continuous operation. Laboratory test using five different concentrations of the slurry yields the following data.

Concentration (kg of water/kg of solids)	5.0	4.2	3.7	3.1	2.5
Rate of sedimentation (mm/s)	0.20	0.12	0.094	0.070	0.050

Calculate the area of the thickener required to effect the separation of a flow of 1.33 kg/s of solids.

MODULE III

- 15. a) With the help of a neat sketch, explain the construction and (7) working of hammer mill.
 - b) Particles of average feed size of 50×10^{-4} m are crushed to an (7)

D

average product size of 10×10^{-4} m at the rate of 20 tonnes per hour. At this rate, the crusher consumes 40 kW of power of which 5 kW are required for running the mill empty. Calculate the power consumption if 12 tonnes/h of this product is further crushed to 5×10^{-4} m size in the same mill? Assume that Rittinger's law is applicable.

OR

- 16. a) Explain the construction and working of ball mill with the help of a (7) neat sketch.
 - b) What rotational speed in rpm would you recommend for a ball mill (7) having 1000 mm in diameter charged with 70 mm balls?

MODULE IV

- 17. a) Explain the construction and working of plate and frame filter (7) press.
 - b) At constant pressure conditions during preliminary analysis, the (7) rate of filtration per square meter of the filter is as follows. Determine the time required to filter out 1500 L of liquid throughout 1 m² of filter surface. Determine the time required to filter out 1500 L of liquid through 1 m² of filter surface.

Volume of filtrate	120 L	300 L
Collection Time	2.5 mins	15 mins.

OR

- 18. a) Write a brief note on constant pressure and constant rate filtration. (7)
 - b) Explain the construction and working of rotary drum filter. (7)

MODULE V

- 19. a) Explain the construction and working of cyclone separator. (7)
 - b) Explain how venture scrubber helps in gas cleaning. (7)

OR

- 20. a) Explain how belt conveyors helps in the transportation of solids (7) and mention the factors influencing the capacity of belt conveyor.
 - b) Explain various mixers used for cohesive and non-cohesive solids. (7)