SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023 COMMON TO CH,CE,FT,ME,RB
(2020 SCHEME)

Course Code : 20MAT202

Course Name: Probability, Statistics and Numerical Methods
Max. Marks :
100
Duration: 3 Hours
Scientific calculator and statistical table is allowed in the examination hall.

PART A
 (Answer all questions. Each question carries 3 marks)

1. Find the mean of the probability distribution of the number of heads obtained in two tosses of an unbiased coin.
2. The mean and variance of binomial variate X are 16 and 8 . Find $P(X=1)$
3. If a continuous random variable has the PDF $f(x)=\left\{\begin{array}{ll}k e^{-x}, & x>0 \\ 0, & x \leq 0\end{array}\right.$. Then find the value of k.
4. Derive the mean of exponential distribution.
5. Define: i) Critical region ii) Level of significance iii) Critical value
6. A random sample of 49 packets of a certain brand of chocolate bar yields a mean weight of 35 gms with a standard deviation of 11 gms . Construct a 95% confidence interval for the mean weight of this particular brand of chocolate bar.
7. Use Lagrange's method to find a polynomial to the following data:

x	1	3	4
y	1	27	64

8. Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ with $n=5$.
9. Using Euler's method find y at $\mathrm{x}=0.25$ given $y^{\prime}=2 x y, y(0)=1, h=0.25$
10. Explain the principle of least squares for determining a line of best fit to a given data.

PART B
 (Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) A binomial distribution with $n=5$ satisfies the property
$8 P(X=4)=P(X=2)$. Find the probability mass function.
b) Show that Poisson distribution is the limiting form of Binomial distribution.

OR

12. a) A random variable X takes the values $-1,1,3$ with equal probabilities and 5 with probability $1 / 2$. Find
i) probability distribution of X
ii) $P(|X-3|>1)$
b) The average number of phone calls/minute coming into a switchboard between 2 and 4 pm is 2.5 . Determine the probability that during one particular minute there will be
i) 0 telephone call
ii) 4 or fewer telephone calls
iii) more than 6 telephone calls

MODULE II

13. a) Let X be a random variable with $\operatorname{PDF} f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2 \\ 0, & \text { elsewhere }\end{cases}$

Find i) mean
ii) variance
iii) standard deviation
iv) $\mathrm{E}(4 \mathrm{X}+5)$
b) In a normal distribution, 17% of the items are below 30 and 17% are above 60. Find the mean and standard deviation.

OR

14. a) If a random variable X follows uniform distribution with PDF
$f(x)=\left\{\begin{array}{cl}\frac{1}{4} & ,|x|<2 \\ 0, & \text { otherwise }\end{array}\right.$
Find i) $P(X<1) \quad$ ii) $P(|X|>1) \quad$ iii) $P(2 X+3>5)$
b) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 and with a standard deviation of Rs.5.
Estimate the number of workers whose weekly wages will be
(i) between Rs. 70 and Rs. 72
(ii) more than Rs. 75

MODULE III

15. a) A certain cubical die was thrown 9000 times and 5 or 6 was obtained 3240 times. On the assumption of certain throwing, do the data indicate an unbiased die?
b) In order to make a survey of the buying habits, two markets A and B are chosen at two different parts of a city. 400 women shoppers are chosen at random in market A, their average daily expenditure on food is found to be Rs. 250 with a SD of Rs.40. The figures are Rs. 220 and Rs. 55 respectively in market B, where also 400 women shoppers are chosen at random. Test at 1% level of significance whether the average daily food expenditure of two populations of shoppers are equal.

OR

16. a) A coin is tossed 400 times and the head turned up 216 times. Test the hypothesis that the coin is unbiased?
b) A random sample of 20 daily workers of state A were found to have an average daily earning of Rs. 44 with sample variance 900. Another sample of 20 daily workers from state B was found to earn an average of Rs. 30 per day with sample variance 400 . Test whether the workers in state A earn more than in state B.

MODULE IV

17. a) Find a positive root of $\cos x+1=3 x$ using Newton-Raphson method correct to 4 decimal places.
b) Find the value of y at $\mathrm{x}=21$ from the following table using Newton's interpolation formula.

x	20	23	26	29
y	0.342	0.3907	0.4384	0.4848

OR

18. a) Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to 3 decimal places.
b) The acceleration of a moving particle is measured in every 5 seconds and is tabulated below. Using Simpson's one third rule find the velocity of the particle.

t	0	5	10	15	20	25	30	35	40
$\mathrm{a}(\mathrm{t})$	40	45.25	48.5	51.25	54.35	59.48	61.5	64.3	68.7

MODULE V
19. a) Fit a second-degree parabola to the data (1. -1$),(2,4),(3,6)$
b) Solve the following system of equations using Gauss-Seidel iteration method correct to four decimal places.
$10 x-5 y-2 z=3, \quad 4 x-10 y+3 z=-3, \quad x+6 y+10 z=-3$

OR

20. a) Using fourth order Runge-Kutta method solve the initial value problem $y^{\prime}=-2 x y^{2}, y(0)=1$ in the interval $(0,0.2)$ by taking $\mathrm{h}=0.2$
b) Solve the initial value problem $\frac{d y}{d x}=x-y^{2}, y(0)=1$ to find $y(0.4)$ by Adam's method, given $y(0.1)=0.9117, y(0.2)=0.8494, y(0.3)=0.8061$
