Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023

COMMON TO CH,CE,FT,ME,RB (2020 SCHEME)

Course Code : 20MAT202

Course Name: Probability, Statistics and Numerical Methods

Max. Marks : 100

Duration: 3 Hours

Scientific calculator and statistical table is allowed in the examination hall.

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the mean of the probability distribution of the number of heads obtained in two tosses of an unbiased coin.
- 2. The mean and variance of binomial variate X are 16 and 8. Find P(X = 1)
- 3. If a continuous random variable has the PDF $f(x) = \begin{cases} k e^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$. Then find the value of k.
- 4. Derive the mean of exponential distribution.
- 5. Define: i) Critical region ii) Level of significance iii) Critical value
- 6. A random sample of 49 packets of a certain brand of chocolate bar yields a mean weight of 35 gms with a standard deviation of 11 gms. Construct a 95% confidence interval for the mean weight of this particular brand of chocolate bar.
- 7. Use Lagrange's method to find a polynomial to the following data:

х	1	3	4
у	1	27	64

- 8. Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ with n = 5.
- 9. Using Euler's method find y at x = 0.25 given y' = 2xy, y(0) = 1, h = 0.25
- 10. Explain the principle of least squares for determining a line of best fit to a given data.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

- 11. a) A binomial distribution with n = 5 satisfies the property (7) 8 P(X = 4) = P(X = 2). Find the probability mass function.
 - b) Show that Poisson distribution is the limiting form of Binomial (7) distribution.

421A2

OR

- 12. a) A random variable X takes the values -1, 1, 3 with equal (7) probabilities and 5 with probability ½. Find
 - i) probability distribution of X
 - ii) P(|X 3| > 1)

Α

13.

- b) The average number of phone calls/minute coming into a (7) switchboard between 2 and 4 pm is 2.5. Determine the probability that during one particular minute there will be
 - i) 0 telephone call
 - ii) 4 or fewer telephone calls
 - iii) more than 6 telephone calls

MODULE II

- a) Let X be a random variable with PDF $f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2\\ 0, & elsewhere \end{cases}$ (7)
 - Find i) mean
 - ii) variance
 - iii) standard deviation
 - iv) E(4X+5)
- b) In a normal distribution, 17% of the items are below 30 and 17% (7) are above 60. Find the mean and standard deviation.

OR

14. a) If a random variable X follows uniform distribution with PDF (7) $\begin{pmatrix} 1 & |v| < 2 \end{pmatrix}$

$$f(x) = \begin{cases} \frac{1}{4} & |x| < 2\\ 0, & otherwise \end{cases}$$

Find (X < 1)

Find *i*) P(X < 1) *ii*) P(|X| > 1) *iii*) P(2X + 3 > 5)

- b) The weekly wages of 1000 workmen are normally distributed around a mean of Rs.70 and with a standard deviation of Rs.5. Estimate the number of workers whose weekly wages will be
 - (i) between Rs.70 and Rs.72
 - (ii) more than Rs.75

MODULE III

15. a) A certain cubical die was thrown 9000 times and 5 or 6 was (7) obtained 3240 times. On the assumption of certain throwing, do the data indicate an unbiased die?

421A2

Α

(7)

 b) In order to make a survey of the buying habits, two markets A and B are chosen at two different parts of a city. 400 women shoppers are chosen at random in market A, their average daily expenditure on food is found to be Rs.250 with a SD of Rs.40. The figures are Rs.220 and Rs.55 respectively in market B, where also 400 women shoppers are chosen at random. Test at 1% level of significance whether the average daily food expenditure of two populations of shoppers are equal.

OR

- 16. a) A coin is tossed 400 times and the head turned up 216 times. Test the hypothesis that the coin is unbiased? (7)
 - b) A random sample of 20 daily workers of state A were found to have an average daily earning of Rs.44 with sample variance 900. Another sample of 20 daily workers from state B was found to earn an average of Rs.30 per day with sample variance 400. Test whether the workers in state A earn more than in state B.

MODULE IV

- 17. a) Find a positive root of $\cos x + 1 = 3x$ using Newton-Raphson (7) method correct to 4 decimal places.
 - b) Find the value of y at x=21 from the following table using Newton's (7) interpolation formula.

х	20	23	26	29
у	0.342	0.3907	0.4384	0.4848

OR

- 18. a) Find a real root of the equation $x^3 2x 5 = 0$ by the method of (7) false position correct to 3 decimal places.
 - b) The acceleration of a moving particle is measured in every 5 seconds and is tabulated below. Using Simpson's one third rule find (7) the velocity of the particle.

t	0	5	10	15	20	25	30	35	40
a(t)	40	45.25	48.5	51.25	54.35	59.48	61.5	64.3	68.7

MODULE V

19. a) Fit a second-degree parabola to the data (1. -1), (2,4), (3,6)

b) Solve the following system of equations using Gauss-Seidel (7) iteration method correct to four decimal places. 10x - 5y - 2z = 3, 4x - 10y + 3z = -3, x + 6y + 10z = -3

OR

421A2

- a) Using fourth order Runge-Kutta method solve the initial value (7) problem $y' = -2xy^2$, y(0) = 1 in the interval (0, 0.2) by taking h=0.2
- b) Solve the initial value problem $\frac{dy}{dx} = x y^2$, y(0) = 1 to find y(0.4) by (7) Adam's method, given y(0.1)=0.9117, y(0.2)=0.8494, y(0.3)=0.8061

Α

20.