SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023 ELECTRICAL AND ELECTRONICS ENGINEERING
(2020 SCHEME)
Course Code : 20EET204
Course Name: Electromagnetic Theory
Max. Marks : 100
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Explain the physical significance of curl of vector field.
2. Transform the vector field $\overrightarrow{\vec{A}}=10 \overrightarrow{a_{x}}-8 \overrightarrow{a_{y}}+6 \overrightarrow{a_{z}}$ to cylindrical coordinate system at point $\mathrm{P}(10,-8,6)$.
3. Derive the differential form of Gauss's law.
4. Obtain Laplace's equation from Poisson's equation.
5. Distinguish between scalar and vector magnetic potential.
6. Calculate the capacitance of a parallel plate capacitor having an electrode area of $100 \mathrm{~cm}^{2}$. The distance between the electrodes is 4 mm and the dielectric has a permittivity of 3.5 . The applied potential is 100 V . Also compute the charges on the plates.
7. State the wave equations for E and H in a conducting medium.
8. Show that the intrinsic impedance for free space is 120π.
9. Explain about electromagnetic interference in transmission line.
10. Explain about impedance matching in transmission line.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I
11. a) Calculate the constants a, b and c so that the vector \bar{E} is
irrotational. $\bar{E}=(x+2 y+a z) \widehat{a_{x}}+(b x-3 y-z) \widehat{a_{y}}+(4 x+c y+2 z) \widehat{a_{z}}$.
b) Convert the vector $\bar{A}=\frac{10}{r} \widehat{a_{r}}+r \cos \theta \widehat{a_{\theta}}+\widehat{a_{\varnothing}}$ to cartesian coordinate system. Also evaluate \bar{A} at $(-3,4,0)$.

OR

12. a) Explain about spherical coordinate system.
b) Verify the divergence theorem for vector field $\bar{D}=x y^{2} \widehat{a_{x}}+y^{3} \widehat{a_{y}}+$ $y^{2} z \widehat{a_{z}}$ taken over the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.

MODULE II

13. a) Explain about electric dipole. Derive an expression for the electric field intensity at any point due to dipole.
b) A charge q_{2} experiences a force of 1 N at a distance of 1 m from another charge. Calculate the distance at which the force on q_{2} is reduced to 0.5 N .

OR

14. a) With neat diagram derive an expression for capacitance of co axial cable.
b) A charge $Q_{1}=-10 \mathrm{nC}$ is at origin in free space. What charge Q_{t} should be kept at $(2,0,0)$ to make x-component of electric field intensity as zero at the point $(3,1,1)$.

MODULE III

15. a) Derive the Maxwell's equation from i) Ampere's circuital law, ii) Gauss's law, iii) Faraday's law.
b) If the magnetic flux density in a medium is given by $B=\frac{1}{\rho} \cos \varnothing \widehat{a_{\rho}}$, calculate the flux crossing the surface defined by $-\frac{\pi}{4}<\emptyset<\frac{\pi}{4}, 0 \leq z \leq 2 m$.

OR

16. a) Derive the boundary conditions for electric field at an interface separating conductor and dielectric.
b) Derive the expression for magnetic field intensity on the axis of a circular loop.

MODULE IV

17. a) Calculate the attenuation constant and phase constant for a uniform plane wave with frequency of 10 GHz in a medium for which $\mu=\mu_{0}, \varepsilon_{r}=2.3$ and $\sigma=2.56 \times 10^{-4} \mathrm{mho} / \mathrm{m}$.
b) State and prove Poynting's theorem.

OR

18. a) Derive the wave equation in a lossy dielectric medium.
b) A 9375 MHz uniform plane wave is propagating in polystyrene
($\mu_{r}=1, \varepsilon_{r}=2.56$). If the amplitude of the electric field intensity is 20 V / m \& the material is lossless, calculate (i) wavelength in polystyrene, (ii) velocity of propagation, (iii) intrinsic impedance (iv) propagation constant.

MODULE V

19. a) Explain about standing wave ratio and derive the expression for voltage SWR.
b) An air-line has a characteristic impedance of 70Ω and a phase constant of $3 \mathrm{rad} / \mathrm{m}$ at 100 MHz . calculate the inductance $/ \mathrm{m}$ and capacitance/m of the line.
20. a) A transmission line operating at $500 \mathrm{M} \mathrm{rad} / \mathrm{s}$ has $\mathrm{L}=0.5 \mu \mathrm{H} / \mathrm{m}$, $\mathrm{C}=32 \mathrm{pF} / \mathrm{m}, \mathrm{G}=100 \mu \Omega^{-1} / \mathrm{m}$ and $\mathrm{R}=25 \Omega / \mathrm{m}$. Calculate propagation constant, velocity of propagation, wavelength and characteristic impedance.
b) Derive the expression for characteristic impedance in transmission line.
