Register No.:

D

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023 ELECTRICAL AND ELECTRONICS ENGINEERING

(2020 SCHEME)

- Course Code : 20EET206
- Course Name: Digital Electronics
- Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Convert 192.86₁₀ to binary and hexadecimal.

.....

- 2. Explain the following terms with respect to logic family.
 - a) Noise margin
 - b) Fan out
 - c) Propagation delay
- 3. State and explain the principle of duality and De-Morgan's theorem.
- 4. Obtain the truth table of the following function F1.

F1=(A+B)(A'+B+C)(A+B'+C)

- 5. Illustrate the working of a parity encoder.
- 6. Explain the concept of arithmetic and logic unit.
- 7. Explain the differences between a characteristic table and an excitation table.
- 8. Differentiate edge triggered and level triggered flip flops.
- 9. How do you differentiate Mealy and Moore machines?
- 10. What do you mean by state transition diagram?

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11.	a) Perform following operations on decimal numbers using 2's	(9)
	complement method. (i) 55-86 (ii) 68 –23	(8)
	b) Explain the following.	
	(i) Excess-3 code(ii) Gray code (iii) ASCII code (iv) BCD code	(6)
	(iv) Parity codes	

OR

- 12. a) With the help of a suitable diagram, explain the working of a TTL (8) NAND gate.
 - b) (i) Differentiate fixed point and floating-point representation.
 - (ii) Represent $(1.27 \times 10^2)_{10}$ 10 fixed point and floating point (6) Binary formats.

527A4

MODULE II

13.	 a) Convert each of the following into the other canonical form (i) F(A, B, C) = ∏M(1,2,6) (ii) F(A, B, C,D) = ∏M(1,3,5,8) (iii) F(q, r, s,t) = ∑m(1,2,7,9,12) b) Simplify the Boolean function 	(9)	
	$F(w, x, y, z) = \sum m(0,1,2,4,6,8,9, 13) + d(5,12,14)$ using K map and obtain simplified logic expression.	(5)	
OR			
14.	a) Explain the working of a carry look-ahead adder. What are the merits and demerits of it?	(8)	
	b) Design a full subtractor and implement it using universal gates.	(6)	
MODULE III			
15.	a) Implement the logic function $F(w, x, y, z) = \sum m(0,1,2,4,5,8,9,12,13,14)$ on an 8:1 multiplexer.	(8)	
	b) Construct an 8:1 multiplexer using 4:1 multiplexers and explain its working.	(6)	
	OR		
16.	a) Design and implement a 3-bit magnitude comparator.	(9)	
	b) What is a priority encoder? Show the design of a 4-input priority encoder.	(5)	
	MODULE IV		
17.	 a) Design a Mod-7 synchronous up counter using JK flip flops. b) Construct a 4-bit shift register that performs SISO & PISO 	(10) (4)	
	operations.		
OR			
18.	 a) Design a sequential circuit that produces the following output sequence: 0000,1000,1100,1110,1111,0111,0011,0001,0000 	(7)	
	b) Design a Mod-6 asynchronous up counter with proper narration.	(7)	
	MODULE V		
19.	a) Explain the construction and working of a Flash ADC.	(8)	
	b) Write notes on PAL, PLA and FPGA.	(6)	
OR			
20.	 a) With the help of suitable diagrams, illustrate the working of an R-2R ladder D/A converter. 	(8)	
	b) Write a VHDL program to describe a full adder. Show necessary diagrams	(6)	
