Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023

(2020 SCHEME)

Course Code : 20CST292

Course Name: Number Theory

Max. Marks : 100

Duration: 3 Hours

(5)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. State and prove Well Ordering principle.
- 2. Find gcd (2322,654) using Euclid's algorithm.
- 3. Solve the linear congruence equation $12 \ge 48 \pmod{18}$.
- 4. Use Fermat's Little theorem to show that 91 is not a prime.
- 5. Find the value of
 - a. Ø(29) b. Ø(32)
- 6. Calculate $4^{99} \pmod{35}$.
- 7. Define Dirichlet Product.
- 8. Define Jacobi Symbol with example.
- 9. Define Pell's equation
- 10. Show that 23 cannot be represented as a sum of two squares.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) State Euclidean Theorem and its extension. Express gcd (252,198) as a linear combination of 252 and 198 (8)
 - b) Prove that for a positive integer m, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$ (6)

OR

- 12. a) Determine all solutions in the positive integers for the given Diophantine equation $172 \times +20 \text{ y} = 1000$ (9)
 - b) Define
 - a. Group
 - b. Field

921A2

MODULE II

13.	a)	Explain Fermat's factorization algorithm and use this algorithm to factorize 809009.	(8)
	b)	State and prove Fermat's theorem.	(6)
OR			
14.	a)	Find an integer that has a remainder of 2 when divided by 3 and 7, and has a remainder of 3 when divided by 5.	(8)
	b)	Prove if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \mod{n}$	(6)
MODULE III			
15.	a)	Define Carmichael number and show that a 561 is a Carmichael number	(5)
	b)	Distinguish between public key encryption and private key encryption techniques. Also mention merits and demerits of both.	(9)
OR			
16.	a)	Find the unit digit of 3 ¹⁰⁰ by means of Euler's theorem.	(7)
	b)	Check there exists primitive roots for G=< Z_7^* , X>.	(7)
MODULE IV			
17.	a)	Define Quadratic Residue and find the quadratic residue and non- residue of modulo 13.	(8)
	b)	Define Legendre Symbol with example. List the properties	(6)
OR			
18.	a)	Define Mobius function and prove Mobius function is a multiplicative.	(5)
	b)	Solve the quadratic congruence equation	
		a. $y^2 \equiv 10 \pmod{13}$ b. $x^2 - 5x + 6 \equiv 0 \pmod{11}$	(9)
		c. $x^2 + 8x + 6 \equiv 0 \pmod{13}$	
MODULE V			
19.	a)	Solve the Pell's equation $x^2 - 6y^2 = 1$.	(7)
	b)	Define a finite continued fraction. Express 89 /37 as a finite continued fraction.	(7)
OR			
20.	a)	Show that Gaussian integers is closed under addition, subtraction and multiplication.	(7)
	b)	If m and n can be expressed as sum of four squares, then show that mn can also be expressed the sum of four squares.	(7)