SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023
(2020 SCHEME)

Course Code :
20CST294
Course Name: Computational Fundamentals for Machine Learning
Max. Marks :
100
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Define Basis and Dimension of a vector space
2. Check whether the polynomials $\mathrm{x}(\mathrm{t})=1-\mathrm{t}+3 t^{2} ; \mathrm{y}(\mathrm{t})=2+3 \mathrm{t}+\mathrm{t}^{2}$; $z(\mathrm{t})=3+4 \mathrm{t}+3 t^{2}$ over R are linearly independent or not.
3. Determine whether the vectors, $\mathrm{X}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ and $\mathrm{Y}=\left[\begin{array}{r}-3 \\ 0 \\ 2\end{array}\right]$ are orthogonal or not
4. Find the eigen values and corresponding eigen vectors for $A=\left[\begin{array}{ll}8 & 4 \\ 2 & 6\end{array}\right]$
5. Find the gradient and its magnitude $f(x, y)=\sqrt{x^{2}+y^{2}}$ at $(1,2)$
6. Expand $f(x)=e^{3 x}$ as a Maclaurin series
7. Write note on Bayes' theorem.
8. Find the probability density function of getting Heads for a discrete random experiment of throwing two unbiased coins
9. Find the maximum and minimum values of $f(x, y)=4 x+4 y-y^{2}-x^{2}$ subject to $x^{2}+y^{2}=2$
10. Explain the process of Gradient Descent

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Find $\operatorname{Ker}(\varnothing), \operatorname{ran}(\varnothing)$ and its dimension, where $\emptyset: R^{4} \rightarrow R^{2}$ is a linear transformation defined by $\varnothing X=A X, A_{\varnothing}=\left[\begin{array}{cccc}1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$ is the transformation matrix
b) Solve by Gauss elimination method

$$
\begin{align*}
& x+y+z=2 \\
& y+z=-2 \tag{5}\\
& 4 y+6 z=-12
\end{align*}
$$

OR

12. a) Show that set of real numbers under normal addition and multiplication is a Vector space
b) Solve the following linear system of equations

$$
\begin{align*}
& y+z-2 w=0 \\
& 2 x-3 y-3 z+6 w=2 \tag{7}\\
& 4 x+y+z-2 w=4
\end{align*}
$$

MODULE II

13. a) Find the Singular value decomposition of $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$
b) Use Cholesky decomposition to decompose $A=\left[\begin{array}{ccc}4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98\end{array}\right]$

OR

14. a) Find the Eigen decomposition of $\mathrm{A}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$
b) Using Gram-Schmidt Orthogonalization to orthogonalize the vectors $\left[\begin{array}{r}2 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$

MODULE III

15. a) Find the local linear approximation L of $f(x, y)=\sqrt{x^{2}+y^{2}}$ at the point $P(3,4)$. Compute the error in approximation f by L at the point $Q(3.04,3.98)$
b) Locate all relative extrema and saddle points of $f(x, y)=x y-y^{2}-x^{3}+x y$

OR

16. a) Expand $f(x, y)=e^{x y}$ at $(1,1)$, using Taylor's theorem
b) Find the direction of greatest increase of the function
$f(x, y)=4 x^{2}+y^{2}+2 y$ at the point $\mathrm{P}(1,2)$.

MODULE IV

17. a) A discrete random variable X has the following probability distribution

X	0	1	2	3
$\mathrm{P}[\mathrm{X}=\mathrm{x}]$	$\frac{k}{2}$	$\frac{k}{3}$	$\frac{k+1}{3}$	$\frac{2 k+1}{6}$

Find (1) the value of k
(2) $\mathrm{P}[\mathrm{X} \leq 2]$
(3) Mean
b) In a large consignment of electric bulbs 10% are known to be defective. A random sample of 20 is taken for inspection. Find the probability that
(1) all are good bulbs
(2) exactly 3 are defective bulbs

OR

18. a) Consider the following bivariate distribution of two discrete random variables X and Y ,

$$
\begin{equation*}
f(x, y)=k(2 x+3 y) ; x=0,1,2 \text { and } y=1,2,3 \tag{10}
\end{equation*}
$$

(1) Find the value of k
(2) Compute the marginal probability of x and y
(3) $\mathrm{P}(\mathrm{X}+\mathrm{Y}>3)$
b) Differentiate between independent events and mutually exclusive events in probability, with an example

MODULE V

19. a) Solve the linear programming problem graphically $\operatorname{Max} Z=18 x+10 y$
Subject to constraints:

$$
\begin{equation*}
4 x+y \leq 20,2 x+3 y \leq 30, x \leq 5, y \leq 10 x, y \geq 0 \tag{7}
\end{equation*}
$$

b) Explain the process of Steepest descent method

OR

20. a) Solve L.P.P using simplex method
$\operatorname{Max} Z=7 x+5 y$
Subject to constraints:

$$
\begin{equation*}
x+2 y \leq 6,4 x+3 y \leq 12, x, y \geq 0 \tag{8}
\end{equation*}
$$

b) Write the Lagrange dual of

Min $Z=-5 x-3 y$
Subject to constraints:

$$
2 x+2 y \leq 33,2 x-4 y \leq 8,-2 x+y \leq 5,-x \leq-1, y \leq 8
$$

