Η

Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023

(2020 SCHEME)

Course Code :	20CST294	
Course Name:	Computational Fundamentals for Machine Learni	ng
Max. Marks :	100	Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define Basis and Dimension of a vector space
- 2. Check whether the polynomials $x(t) = 1 t + 3t^2$; $y(t) = 2 + 3t + t^2$; $z(t) = 3 + 4t + 3t^2$ over R are linearly independent or not.
- 3. Determine whether the vectors, $X = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ and $Y = \begin{bmatrix} -3 \\ 0 \\ 2 \end{bmatrix}$ are orthogonal or not
- 4. Find the eigen values and corresponding eigen vectors for A = $\begin{bmatrix} 8 & 4 \\ 2 & 6 \end{bmatrix}$
- 5. Find the gradient and its magnitude $f(x, y) = \sqrt{x^2 + y^2}$ at (1,2)
- 6. Expand $f(x) = e^{3x}$ as a Maclaurin series
- 7. Write note on Bayes' theorem.
- 8. Find the probability density function of getting Heads for a discrete random experiment of throwing two unbiased coins
- 9. Find the maximum and minimum values of $f(x, y) = 4x + 4y y^2 x^2$ subject to $x^2 + y^2 = 2$
- 10. Explain the process of Gradient Descent

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

- 11. a) Find $Ker(\emptyset), ran(\emptyset)$ and its dimension, where $\emptyset : \mathbb{R}^4 \to \mathbb{R}^2$ is a linear transformation defined by $\emptyset X = AX$, $A_{\emptyset} = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ is the (9) transformation matrix
 - b) Solve by Gauss elimination method

OR

12. a) Show that set of real numbers under normal addition and (7)multiplication is a Vector space Solve the following linear system of equations b) v + z - 2w = 0(7)2x - 3y - 3z + 6w = 24x + v + z - 2w = 4**MODULE II** 13. a) (10)

931A3

Find the Singular value decomposition of $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ Use Cholesky decomposition to decompose $A = \begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix}$ b) (4)

OR

Find the Eigen decomposition of A = $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ 14. a) (10)Using Gram-Schmidt Orthogonalization to orthogonalize the b) vectors $\begin{bmatrix} 2\\-1\\2 \end{bmatrix}, \begin{bmatrix} -1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\1 \end{bmatrix}$ (4)

MODULE III

- 15. a) Find the local linear approximation L of $f(x, y) = \sqrt{x^2 + y^2}$ at the (7)point P(3, 4). Compute the error in approximation f by L at the point Q(3.04, 3.98)
 - b) Locate all relative extrema and saddle points of (7) $f(x, y) = xy - y^2 - x^3 + xy$

OR

- Expand $f(x, y) = e^{xy} at (1,1)$, using Taylor's theorem 16. a) (10)
 - Find the direction of greatest increase of the function b) (4) $f(x, y) = 4x^2 + y^2 + 2y$ at the point P(1,2).

MODULE IV

A discrete random variable X has the following probability 17. a) distribution

Х	0	1	2	3
P[X=x]	k	k	<i>k</i> + 1	2k + 1
	2	3	3	6

Find (1) the value of k

- (2) $P[X \le 2]$
- (3) Mean
- b) In a large consignment of electric bulbs 10% are known to be defective. A random sample of 20 is taken for inspection. Find the (7)probability that

(1) all are good bulbs

(2) exactly 3 are defective bulbs

OR

18.	a)	Consider the following bivariate distribution of two discrete random variables X and Y, f(x, y) = k(2x + 3y); x = 0,1,2 and y = 1,2,3						
	 (1) Find the value of k (2) Compute the marginal probability of x and y (3) P(X+Y > 3) 							
	b)	Differentiate between independent events and mutually exclusive events in probability, with an example	(4)					
MODULE V								
19.	a)	Solve the linear programming problem graphically						
		Max Z = 18x + 10y						
		Subject to constraints: 4r + y < 20 $2r + 3y < 30$ $r < 5$ $y < 10$ r $y > 0$						
	b)	Explain the process of Steepest descent method	(7)					
OR								
20.	a)	Solve L.P.P using simplex method						
		$\operatorname{Max} Z = 7x + 5y$	(8)					
		Subject to constraints: $x + 2y \le 6$ $4x + 2y \le 12$ $x \ge 0$	()					
	b)	$x + 2y \le 0, 4x + 3y \le 12, x, y \ge 0$ Write the Lagrange dual of						
	,	Min Z = -5x-3y	(\mathcal{C})					
		Subject to constraints:	(6)					
		$2x$ + $2y$ \leq 33 , $2x$ - $4y$ \leq 8 , - $2x$ + y \leq 5, - x \leq -1, y \leq 8						