Register No.:

С

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), MAY 2023

COMPUTER SCIENCE AND SYSTEMS ENGINEERING

(2021 Scheme)

Course Code: 21SE203

Course Name: Automata Theory and Computability

Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Design a NFA that accepts all strings containing 1100 as substring or set of all strings in which a pair of 1's is followed by a pair of 0's.
- 2. State and prove Pumping Lemma for regular languages.
- 3. Define the language acceptance by Pushdown Automata.
- 4. How does Turing Machine work as a Language Acceptor?
- 5. Define Time and Space Complexity of TM.
- 6. Differentiate between decidable and undecidable problems.
- 7. Show that travelling salesman problem is in class NP.
- 8. Outline the concept of polynomial time reductions.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

9. a) Convert the following NFA to DFA.

State/Alphabet	0	1	
->q0	q0	q1, q2	(3)
q1	q1, q2	q2	(3)
* q2	q0, q1	q1	

b) Construct a DFA for the language over {0, 1}* such that it contains (3)
'000' as a substring.

OR

- 10. a) Design DFA to accept strings over $\Sigma = (0,1)$ with two consecutive 0's. (3)
 - b) Prove or disprove that regular languages are closed under (3) concatenation and complement.

652A2

С

MODULE II

11.	a) Let $L = \{w: w \in \{0,1\}^* w \text{ does not contain } 00 \text{ and is not empty}\}.$	(3)			
	Construct a regular expression that generates Lb) Construct NFA for regular expression (1 + 0)0*.	(3)			
	OR				
12.	a) Write Regular Expression for the set of strings over {0,1} that have atleast one 1.	(3)			
	b) Prove by pumping lemma, that the language $0^{n}1^{n}$ is not regular.	(3)			
MODULE III					
13. Consider the following grammar:					
	$S \rightarrow OB 1A$				
	A -> 0 0S 1AA B -> 1 1S 0BB	(6)			
	Find left most derivation, rightmost derivation for string 00110101.				
OR					
14.	Convert the following grammar G into GNF.				
	S->XA BB				
	B->b SB	(6)			
	X ->b A ->a				
MODULE IV					
15.	a) Construct a Turing machine with no more than three states that	<i></i>			
	accepts the language $a(a+b)^*$. Assume $\Sigma = \{a,b\}$	(4)			
	b) When is a Recursively Enumerable language said to be Recursive?	(2)			
OR					
16.	Explain about different types of turing machine.	(6)			
MODULE V					
17.	Prove that the halting problem of Turing machine is undecidable.	(6)			
	OR				
18.	A DFA defines a decidable language. Justify.	(6)			
	MODULE VI				
19.	Describe satisfiability problem. Show that satisfiability problem is in class NP.	(6)			
OR					
20.	Explain co- NP-PSPACE Complete Problem using a relevant example.	(6)			
