Duration: 3 Hours

(2)

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER M.TECH DEGREE EXAMINATION (Regular), MAY 2023

ROBOTICS AND AUTOMATION

(2021 Scheme)

Course Code: 21RA206-D

Course Name: Adaptive Control Systems

Max. Marks: 60

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Draw the block diagram of a robust high gain system.
- 2. Describe the effects of load disturbances.
- 3. State sign-sign algorithm.
- 4. Enumerate adaptive backstepping algorithm.
- 5. Describe nonlinear transformation process.
- 6. Explain the gain scheduling application in an oxygen trim controller.
- 7. Illustrate sampling, pre and post filtering.
- 8. Paraphrase Youla parametrization.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

- 9. a) Comment on the key problems in autopilot design for a ship (4) steering problem.
 - b) State least squares estimation theorem.

OR

- 10. a) With neat diagrams, explain about any adaptive scheme. (4)
 - b) Explain the various steps in the construction of an adaptive (2) controller.

MODULE II

- 11. a) Using neat diagrams, explain the working of a self-tuning regulator. (4)
 - b) Write an example of continuous time self-tuner. (2)

OR

12. a) Describe the various steps of pole placement design. (4)

F		816A2 Total F	Pages: 2
	b)	Explain about direct self tuning regulator.	(2)
		MODULE III	
13.	Giv	e a brief analysis of floquet theory.	(6)
		OR	
14.	Exp	plain the MRAS gain adjustment based on MIT rule.	(6)
		MODULE IV	
15.	a) b)	Enumerate the design of gain scheduling controller for any particular application.	(4) (2)
	0)	OR	(4)
16.	a) b)	Comprehend adaptive feedback linearization. With proper equations, represent backstepping technique.	(4) (2)
		MODULE V	
17.	Sur seco	nmarise the concept behind nonlinear transformations of a ond order system.	^L (6)
		OR	
18.	Obt	ain the control configuration for a pH control problem.	(6)
		MODULE VI	
19.	a)	Describe about the adaptive control implementation for ultrafiltration process.	(3)
	b)	List and explain the effects of computation delay in controller implementation.	(3)
		OR	
20.	a) b)	Describe about controller windup. Devise a procedure for implementing a control algorithm.	(4) (2)