SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (R), MAY 2023
(2020 SCHEME)
Course Code: 20IMCAT104

Course Name: Introduction to Discrete Mathematics
Max. Marks: 60
Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Describe the logical operator disjunction with truth table.
2. Find the truth value of the following:
a. $2+3=6$ if and only if $1+1=7$
b. If $2+3=4$ then $1+1=2$
c. $1+1=2$ and $2+1=4$
3. State Pigeon hole principle.
4. Among 100 students in a class, how many were born in the same month?
5. State Chinese Remainder Theorem.
6. Find $\operatorname{gcd}(-8,-36)$.
7. Explain pendant and isolated vertex with example.
8. State Dirac's Theorem.
9. Define tree with example.
10. Differentiate between rooted tree and binary tree.

PART B
(Answer one full question from each module, each question carries 6 marks) MODULE I
11. Show that the premises "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an email message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

OR

12. Show that $\mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{r}) \equiv(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{p} \rightarrow r)$ by using truth table.

MODULE II

13. Use mathematical induction to prove that the sum of first n odd positive integers is n^{2}.

OR

14. Use mathematical induction to show that $H_{2^{n}} \geq 1+\frac{n}{2}$ whenever n is a non-negative integer, where the harmonic number $\mathrm{H}_{\mathrm{j}}=1+\frac{1}{2}+$ $\frac{1}{3}+\cdots . .+\frac{1}{j}$.

MODULE III

15. Use Euclidean algorithm to find $\operatorname{gcd}(56,72)$ and obtain the integers x and y such that $\operatorname{gcd}(58,72)=56 x+72 y$.

OR

16. Find the smallest positive integer which is a solution of the system of congruence.
$x \equiv 2 \bmod (3)$
$\mathrm{x} \equiv 3 \bmod (5)$
$\mathrm{x} \equiv 2 \bmod (7)$
Using Chinese remainder theorem.
17. Show that the following graphs are isomorphic

OR

18. Use Dijkstra's algorithm to find the length of the shortest path between a and z from the following graph

MODULE V

19. Use Kruskal's algorithm to find a minimum spanning tree in the graph shown below

20. Find the inorder and post order traversal of the following tree

