C 557A3 Total Pages: 2

Register No.:	 Name:	

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SECOND SEMESTER INTEGRATED MCA DEGREE EXAMINATION (R), MAY 2023 (2020 SCHEME)

Course Code: 20IMCAT106

Course Name: Introduction to Digital Systems & Logic Designs

Max. Marks: 60 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Convert (11111111)₂ and(1011)₂ to decimal.
- 2. Convert (123ABCD)₁₆ to decimal.
- 3. Design XNOR using basic logic gates.
- 4. Prove A+A'B=A+B.
- 5. Write a short note on JK flipflop.
- 6 Compare latches and flipflops.
- 7 Draw the logic circuit of half adder.
- 8 Write a short note on combinational circuits.
- 9. Explain SoC model.
- 10. What are the different types of shift registers?

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. Represent -25 in 8-bit sign magnitude, 1's complement and 2's (6) complement form.

OR

- 12. a) Write a short note on octal numbers. (2)
 - b) Convert (321)₈ to decimal form. (4)

MODULE II

C	557A3	Total Pages: 2
13.	Construct NAND and NOR along with truth table.	(6)
	OR	
14.	State and prove Demorgan's theorem.	(6)
	MODULE III	
15.	Minimize the following boolean function using K-map. $F(A, B, C, D) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$	(6)
	OR	
16.	Illustrate the working of SR flipflop with a neat diagram.	(6)
	MODULE IV	
17.	Design a full subtractor.	(6)
	OR	
18.	Explain decimal to BCD encoder with the logic symbol.	(6)
	MODULE V	
19.	Write note on Serial-In Parallel-Out shift Register.	(6)
	OR	
20.	Compare synchronous and asynchronous counters.	(6)
