SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
SECOND SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023
(2020 SCHEME)
Course Code : 20MAT102
Course Name: Vector Calculus, Differential Equations and Transforms
Max. Marks : 100
Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Find the velocity, speed and acceleration at the given time t of a particle moving along the curve $x=1+3 t, y=3-4 t, z=7+3 t$ at $t=2$.
2. Find curl F at the point $(1,-1,1)$ when $F=x z^{3} \mathbf{i}-2 x^{2} y z \mathbf{j}+2 y z^{4} \mathbf{k}$.
3. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, using Green's theorem.
4. Let $F(x, y, z)=a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ be a constant vector field and σ be the surface of a solid G. Use divergence theorem to show that flux of F across σ is zero.
5. Check whether the function $y=a \cos x+b \sin x$ is a solution of $y^{\prime \prime}+y=0$.
6. Solve $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
7. Derive the Laplace transform of $e^{a t}$ where a is a constant and $t \geq 0$.
8. Find the Laplace transform of $\sin ^{2} t$.
9. Write the Fourier integral representation of a function $f(x)$.
10. Find the Fourier cosine transformation of $f(x)=\left\{\begin{array}{cc}K & \text { if } 0<x<a \\ 0 & \text { if } x>a\end{array}\right.$

PART B
(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Find the work done by the force field $\boldsymbol{F}=x y \boldsymbol{i}+x^{3} \boldsymbol{j}$ on a particle that moves along the curve $C: x=y^{2}$ from (0,0) to (1,1).
b) Determine whether $\boldsymbol{F}=2 e^{2 x} \cos 2 y \boldsymbol{i}-2 e^{2 x} \sin 2 y \boldsymbol{j}$ is a conservative vector field. If so find a potential function for it.

OR
12. a) Let $f(x, y)=x^{2} e^{y}$, find the maximum value of a directional derivative at $(-2,0)$ and find the unit vector in the direction in which the maximum value occurs.
b) Evaluate $\int_{C} 3 x y d y$, where C is the line segment joining $(0,0)$ and $(1,2)$ with the given orientation
(i) Oriented from $(0,0)$ to $(1,2)$
(ii) Oriented from $(1,2)$ to $(0,0)$.

MODULE II

13. a) Using Green's theorem evaluate the work done by $\boldsymbol{F}=\left(e^{2 x}-y^{3}\right) \boldsymbol{i}+$ $\left(\sin y+x^{3}\right) \boldsymbol{j}$ on a particle that travels around the circle $x^{2}+y^{2}=4$ in counter clock wise direction.
b) Define source and sink of a vector field F. Determine whether the vector field $\boldsymbol{F}(x, y, z)=x^{3} \boldsymbol{i}+y^{3} \boldsymbol{j}+2 z^{3} \boldsymbol{k}$ is free of source and sink. If not locate them.

OR

14. a) Use Divergence theorem to find the flux of $F(x, y, z)=\left(x^{2}+y\right) \boldsymbol{i}+$ $(x y) \boldsymbol{j}-(2 x z+y) \boldsymbol{k}$ across the surface σ with outward orientation, were σ is the surface of the tetrahedron in the first octant bounded by $x+$ $y+z=2$ and the coordinate planes.
b) Use Stoke's theorem to evaluate $\int_{C} F \cdot d r$ where $F(x, y, z)=x y \boldsymbol{i}+$ $y z \boldsymbol{j}+z x \boldsymbol{k} ; C$ is the triangle in the plane $x+y+z=1$ with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ with counterclockwise orientation looking from the first octant towards origin.

MODULE III

15. a) Solve the initial value problem
$\left(x^{2} D^{2}-4 x D+6\right) y=0, y(1)=0.4, y^{\prime}(1)=0$.
b) Solve $y^{\prime \prime}+2 y^{\prime}+y=e^{2 x}$.

OR

16. a) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=12 x^{2}$.
b) Using method of variation of parameters solve $y^{\prime \prime}+y=\sec x$.

MODULE IV

17. a) Find the inverse Laplace transform of $\frac{s+1}{s^{2}+2 s}$.
b) Using Laplace Transform solve the initial value problem $y^{\prime}+4 y=t, y(0)=1$.

OR

18. a) Find the Laplace transform of $t^{3} e^{-3 t}$.
b) Solve the initial value problem $y^{\prime \prime}-y=t, y(0)=1, y^{\prime}(0)=1$.

MODULE V

19. a) Find the Fourier integral representation of the function $f(x)=\left\{\begin{array}{l}1 \text { if }|x|<1 \\ 0 \text { if }|x|>1 .\end{array}\right.$.
b) Find the Fourier sine transform of $e^{-|x|}$, Hence evaluate $\int_{0}^{\infty} \frac{w \sin w x}{1+w^{2}} d w$.

OR

20. a)

Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{c}1,0<x<1 \\ -1,1<x<2 \\ 0, x>2\end{array}\right.$
b) Obtain the Fourier sine transform of $\frac{e^{-a x}}{x}$.

