Register No.: .

..... Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023

(2020 SCHEME)

Course Code : 20MAT102

Course Name: Vector Calculus, Differential Equations and Transforms

Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the velocity, speed and acceleration at the given time t of a particle moving along the curve x = 1 + 3t, y = 3 4t, z = 7 + 3t at t = 2.
- 2. Find curl F at the point (1, -1, 1) when $F = xz^3 i 2x^2yz j + 2yz^4 k$.
- 3. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, using Green's theorem.
- 4. Let F(x, y, z) = a i + b j + c k be a constant vector field and σ be the surface of a solid G. Use divergence theorem to show that flux of F across σ is zero.
- 5. Check whether the function $y = a \cos x + b \sin x$ is a solution of y'' + y = 0.
- 6. Solve y'' + 5y' + 6y = 0.
- 7. Derive the Laplace transform of e^{at} where a is a constant and $t \ge 0$.
- 8. Find the Laplace transform of $\sin^2 t$.
- 9. Write the Fourier integral representation of a function f(x).
- 10. Find the Fourier cosine transformation of $f(x) = \begin{cases} K & if \ 0 < x < a \\ 0 & if \ x > a \end{cases}$

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Find the work done by the force field $F = xy i + x^3 j$ on a particle that (7) moves along the curve $C : x = y^2$ from (0,0) to (1,1).
 - b) Determine whether $\mathbf{F} = 2 e^{2x} \cos 2y \, \mathbf{i} 2e^{2x} \sin 2y \, \mathbf{j}$ is a conservative (7) vector field. If so find a potential function for it.

OR

904A1

З

- 12. a) Let $f(x,y) = x^2 e^y$, find the maximum value of a directional derivative (7) at (-2,0) and find the unit vector in the direction in which the maximum value occurs.
 - b) Evaluate $\int_C 3xy \, dy$, where C is the line segment joining (0,0) and (7) (1,2) with the given orientation
 - (i) Oriented from (0,0) to (1,2)
 - (ii) Oriented from (1,2) to (0,0).

MODULE II

- 13. a) Using Green's theorem evaluate the work done by $\mathbf{F} = (e^{2x} y^3)\mathbf{i} + (7)$ (sin $y + x^3$) \mathbf{j} on a particle that travels around the circle $x^2 + y^2 = 4$ in counter clock wise direction.
 - b) Define source and sink of a vector field **F**. Determine whether the vector field $F(x, y, z) = x^3 i + y^3 j + 2z^3 k$ is free of source and sink. If not locate them. (7)

OR

- 14. a) Use Divergence theorem to find the flux of F(x, y, z) = (x² + y)i + (7) (xy)j (2xz + y)k across the surface σ with outward orientation, were σ is the surface of the tetrahedron in the first octant bounded by x + y + z = 2 and the coordinate planes.
 - b) Use Stoke's theorem to evaluate $\int_C F \cdot dr$ where F(x, y, z) = xy i + (7)yz j + zx k; C is the triangle in the plane x + y + z = 1 with vertices (1,0,0), (0,1,0) and (0,0,1) with counterclockwise orientation looking from the first octant towards origin.

MODULE III

15.	a)	Solve the initial value problem	(7)
		$(x^2D^2 - 4xD + 6)y = 0$, $y(1) = 0.4$, $y'(1) = 0$.	
	b)	Solve $y'' + 2y' + y = e^{2x}$.	(7)

OR

16.	a)	Solve $y'' + 3y' + 2y = 12x^2$.	(7)
	b)	Using method of variation of parameters solve $y'' + y = \sec x$.	(7)

MODULE IV

17.	a)	Find the inverse Laplace transform of $\frac{s+1}{s^2+2s}$.	(7)

b) Using Laplace Transform solve the initial value problem y' + 4y = t, y(0) = 1. (7)

OR

Page 2 of 3

904A1

18.	a)	Find the Laplace transform of $t^3 e^{-3t}$.	(7)			
	b)	Solve the initial value problem $y'' - y = t$, $y(0) = 1$, $y'(0) = 1$.	(7)			
	MODULE V					
19.	a)	Find the Fourier integral representation of the function	(7)			

9. a) Find the Fourier integral representation of the function (7)

$$f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$

b) Find the Fourier sine transform of $e^{-|x|}$, Hence evaluate $\int_0^\infty \frac{w \sin wx}{1+w^2} dw$. (7)

OR

- 20. a) Find the Fourier cosine transform of $f(x) = \begin{cases} 1, 0 < x < 1 \\ -1, 1 < x < 2 \\ 0, x > 2 \end{cases}$ (7)
 - b) Obtain the Fourier sine transform of $\frac{e^{-ax}}{x}$. (7)

A

Total Pages: **3**