714A1

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (S), FEBRUARY 2023

(2020 SCHEME)

Course Code:20IMCAT309Course Name:Introduction to Operations ResearchMax. Marks:60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define operations research.
- 2. Give any three characteristics of LPP
- 3. Explain auxiliary LPP in two phase method.
- 4. Define artificial variables with an example.
- 5. What is unbalanced transportation problem? How it is solved?
- 6. Explain north west corner rule to find the solution of a transportation problem.
- 7. Define saddle point in game theory.
- 8. Explain maximin and minimax principle in game theory.
- 9. Explain Kendall's notation in queuing theory
- 10. Explain the various queue disciplines.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

11. Solve the following LP problem using graphical method

Maximize,
$$Z = 6x_1 + 8x_2$$

Subject to $5x_1 + 10x_2 \le 60$
 $4x_1 + 4x_2 \le 40$ (6)
 $x_1, x_2 \ge 0$

714A1

OR

12. Solve the following LPP using simplex method

Maximize ,
$$Z = 7x_1 + 5x_2$$

Subject to $x_1 + 2x_2 \le 6$ (6)
 $4x_1 + 3x_2 \le 12$
 $x_1, x_2 \ge 0$

MODULE II

13. Find the dual of the following primal

Maximize
$$Z = 3x_1 + x_2 + 2x_3$$

Subject to $x_1 + x_2 + x_3 \le 5$
 $2x_1 + x_3 \le 10$
 $x_2 + 3x_3 \le 15$
 $x_1, x_2, x_3 \ge 0$
(6)

OR

14. Solve the following LPP by two phase method

Minimize
$$Z = x_1 + x_2$$

Subject to $2x_1 + x_2 \ge 4$ (6)
 $x_1 + 7x_2 \ge 7$
 $x_1, x_2, \ge 0$

MODULE III

15. Find the initial solution to the transportation problem using least cost entry method

	M1	M2	МЗ	M4	Supply
F1	3	2	4	1	20
F2	2	4	5	3	15
F3	3	5	2	6	25
F4	4	3	1	4	40
Demand	30	20	25	25	

(6)

OR

16. Solve the following assignment problem using Hungarian method

	Employees						
		Ι	II	III	IV	V	
	А	10	5	13	15	16	
Jobs	В	3	9	18	13	6	
	С	10	7	2	2	2	
	D	7	11	9	7	12	
	E	7	9	10	4	12	

MODULE IV

17.	Salva tha	come with poweff matrix	[6	ן9
	Solve the	game with payoff matrix	l8	4

(6)

(6)

(6)

(6)

OR

18. Solve the following game graphically

	Player B						
		B1	B2	B3	B4	В5	(
Player A	A1	3	0	6	-1	7	
	A2	-1	5	-2	2	1	

MODULE V

19. Explain the basic characteristics of a queuing model

OR

- 20. A supermarket has a single cashier. During peak hours , customers arrive at a rate of 20 per hour. The average number of customers that can be processed by the cashier is 24 per hour. Calculate
 - 1) The probability that the cashier is idle
 - 2) The average number of customers in the queuing system
 - 3) The average time a customer spends in the system.
 - 4) The average number of customers in the queue.
 - 5) The average time a customer spends in the queue

E