Register No.:

..... Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), FEBRUARY 2023 COMMON TO CE,CH,EC,EE,FT,ME,RA

(2020 SCHEME)

Course Code : 20MAT201

Course Name: Partial Differential Equations and Complex Analysis

Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Form the partial differential equation for the relation $z = f(x^2 y^2)$.
- ^{2.} Solve $\frac{y^2 z}{x} p + xzq = y^2$.
- 3. Write down the three possible solutions of one-dimensional wave equation.
- 4. Write the boundary condition and initial condition of the string of length l which is initially at rest in equilibrium position and each of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = \mu_0 \sin\left(\frac{\pi x}{l}\right), 0 < x < l.$
- 5. Check whether the function $e^{x}(\cos y i \sin y)$ is analytic or not.
- 6. If u and v are real and imaginary part of an analytic function, show that u and v are harmonic.
- 7. Evaluate $\int \bar{z} dz$ over the circle |z| = 1.
- 8. Find the Taylor's series expansion of $f(z) = \sin z$ about z=0.

9. Determine the location and nature of singularity of the function $\frac{e^{-z^2}}{z^2}$.

10. Find the Residue of $\frac{1}{(z+1)^3}$ at its poles.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Find the partial differential equation of all spheres of fixed (7) radius whose center lie on the z axis.

b) Solve
$$(y-z)p + (x-y)q = (z-x)$$
. (7)

OR

12. a) Solve $px^2 + qy^2 = (x + y)z$. (7)

839A1

Α

Total Pages: **3**

b) Solve by the method of separation of variables

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \quad where \quad u(x,0) = 6e^{-3x}$$
(7)

MODULE II

13. a) Derive the solution of one-dimensional wave equa	tion. (7
---	----------

b) Find the temperature distribution in a rod of length 2m whose (7) end points are maintained at temperature zero and the initial temperature is $f(x) = 100(2x - x^2)$.

OR

- 14. a) A tightly stretched string with fixed end points x = 0 and x = l is (7) initially at rest in its equilibrium position. If each of its points is given velocity $\lambda x(l x)$. Find the displacement of the string at any distance x from one end at any time t.
 - b) A rod of length L is heated in such a way that its ends A and B (7) are at zero temperature. If initially its temperature is given by u = cx(L-x)/L², 0 ≤ x ≤ L, find the temperature at time t.

MODULE III

- 15. a) If f(z)= u+iv is an analytic function and uv = a constant, show (7) that f(z) is a constant.
 - b) Verify that $u = x^3 3xy^2$ is harmonic and find its harmonic (7) conjugate v.

OR

- 16. a) Check whether $f(z) = \log z$ is analytic or not. (7)
 - b) Determine the region of the w-plane into which the triangular (7) region bounded by x = 1, y = 1 and x + y = 1 is mapped by $w = z^2$

MODULE IV

17. a) Evaluate $\int_C z^2 dz$ where C is given by the line 2y = x from (0,0) to (7) (2,1).

b) Evaluate
$$\int_{C} \frac{e^{2z}}{(z+1)^4} dz$$
 where C is the circle $|z| = 2$. (7)

OR

18. a) Using Cauchy's integral formula, evaluate $\int_C \frac{2z+1}{z^2+z} dz$ where C is (7) the circle |z| = 2.

839A1

Total Pages: 3

b) Find the Taylor series expansion of $f(z) = \frac{1}{1+z}$ about z = 3. Also (7) state the region of validity.

MODULE V

19. a) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ as a Laurent series valid in the (7) annulus 1 < |z| < 3.

b) Use Residue theorem to evaluate $\int_{C} \frac{z-3}{z^2+2z+5} dz$ where C is the circle |z+1-i| = 2. (7)

OR

- 20. a) Evaluate $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$ where C is |z-2|=2 by using Cauchy (7) Residue theorem.
 - b) Using contour integration, evaluate $\int_0^\infty \frac{1}{(x^2+a^2)^2} dx.$ (7)