SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (S), FEBRUARY 2023

 COMPUTER SCIENCE AND ENGINEERING(2020 SCHEME)
Course Code : 20MAT203
Course Name: Discrete Mathematical Structures
Max. Marks : 100
Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Show that $[p \wedge(p \rightarrow q)] \rightarrow q$ is a tautology.
2. Establish the validity of the following argument without using truth table
$\mathrm{P} \rightarrow q$
$\mathrm{q} \rightarrow r$
$\mathrm{r} \rightarrow s$
$\therefore \mathrm{p} \rightarrow s$
3. In how many ways can the letters of the word MATHEMATICS be arranged such that the vowels must always come together.
4. How many permutations of $1,2,3,4,5,6,7$ are not derangements.
5. Explain POSET. Give example.
6. Let $A=\{1,2,3,4\}$, give an example of a relation which is Reflexive, Transitive and not Symmetric.
7. Determine the sequence generated by the exponential generating function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}$
8. Determine the coefficient of x^{50} in $f(x)=\left(x^{7}+x^{8}+x^{9}+\ldots\right)^{6}$.
9. Define a semi group. Give an example of a semi group which is not a monoid.
10. If ($G,$. .) is a group prove that for all $a, b \in G(a b)^{-1}=b^{-1} a^{-1}$

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Check the validity of the following argument

Premises: $(\mathrm{p} \rightarrow \mathrm{r}),(\mathrm{r} \rightarrow \mathrm{s}), \mathrm{t} \vee \neg \mathrm{s}, \neg t \vee \mathrm{u}, \neg \mathrm{u}$
Conclusion: $\neg p$
b) Check the validity of the following argument without using truth table.
Premises: "If I join JNTU then I will get best education. If I get best education, then I will get job in USA. If I get job in USA then I will become a millionaire, I joined JNTU".
Conclusion: "I will become a millionaire".

OR

12. a) Check the validity of the following argument using truth table
(i). $[(p \rightarrow q) \wedge q] \rightarrow p$
(ii). $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
b) By the method of contradiction prove the validity of the following
$\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})$
$\mathrm{r} \rightarrow \mathrm{s}$
$\neg(\mathrm{q} \wedge \mathrm{s})$
$\therefore \neg p$

MODULE II

13. a) Find the coefficient of $w^{3} x^{2} y z^{2}$ in the expansion of $(2 w-x+3 y-2 z)^{8}$
b) Determine the number of positive integers $1 \leq n \leq 10000$ where n is not divisible by 5,6 and 8 .

OR

14. a) Find the number of arrangements in the word TALLAHASSEE. How many arrangements have no adjacent A's.
b) Determine the number of integral solutions of $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=32$ where
a) $\mathrm{x}_{\mathrm{i}} \geq 0,1 \leq \mathrm{i} \leq 4$.
b) $\mathrm{x}_{\mathrm{i}}>0,1 \leq \mathrm{i} \leq 4$
c) $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 5$ and $\mathrm{x}_{3}, \mathrm{x}_{4} \geq 7$.

MODULE I7II

15. a) Let f, g and h be three functions from R to R defined by
$f(x)=x^{3}-4 x, g(x)=\frac{1}{x^{2}+1}$ and $h(x)=x^{4}$.
find (i). (f o g) o h (ii). fo (goh) (iii) ($\mathrm{h} \circ \mathrm{g}$) of
b) Let $A=\{1,2,3, \ldots, 12\}$ and R be a relation defined in $\mathrm{A} x \mathrm{~A}$ by $(\mathrm{a}, \mathrm{b}) \mathrm{R}$ (c, d) if and only if $a+d=b+c$. Prove that R is an equivalence relation. Also find the equivalence class of $(2,5)$.

OR

16. a) Let Z be the set of all integers. R is a relation called "congruence modulo 3 " defined by $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in \mathrm{Z}$ and $\mathrm{x}-\mathrm{y}$ is divisible by 3$\}$ show that R is an equivalence relation? Determine the equivalence classes and partition of Z induced by R ?
b) Draw the Hasse Diagram of (D_{35}, /). Show that it is a lattice by using meet join table.

MODULE IV

17. a) Solve the recurrence relation

$$
\begin{equation*}
a_{n}-10 a_{n-1}+25 a_{n-2}=0, n \geq 2, a_{0}=0, a_{1}=4 \tag{6}
\end{equation*}
$$

b) Solve the recurrence relation

$$
\begin{equation*}
a_{n+2}-8 a_{n+1}+16 a_{n}=8(5)^{n}, n \geq 0, a_{0}=12, a_{1}=5 \tag{8}
\end{equation*}
$$

OR

18. a) The number of bacteria in culture is 1000 , and this number increases 250% every two hours. Use a recurrence relation to determine the number of bacteria present after one day.
b) Solve the recurrence relation
$\mathrm{a}_{\mathrm{n}+2}-6 \mathrm{a}_{\mathrm{n}+1}+9 \mathrm{a}_{\mathrm{n}}=3(2)^{\mathrm{n}}+7(3)^{\mathrm{n}}, \mathrm{n} \geq 0, \mathrm{a}_{0}=1, \mathrm{a}_{1}=4$

MODULE V

19. a) Prove that the set $G=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right\}$ form a group under multiplication of matrices.
b) Show that $\left\langle Z_{6},+_{6}\right\rangle$ is an abelian group where $+_{6}$ is the operation "addition modulo 6".

OR

20. a) Let Q^{+}denote the set of positive rational numbers. A composition " *"is defined in Q^{+}by $\mathrm{a}^{*} \mathrm{~b}=\frac{a b}{2}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+}$. Prove that $\left(\mathrm{Q}^{+},{ }^{*}\right)$ is a abelian group.
b) If $(G,$.$) is a group and a, b \in G$, prove that $(a b)^{2}=a^{2} b^{2}$ if and only if G is abelian.
