447A2

Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.C.A DEGREE EXAMINATION (S), FEBRUARY 2023

(2021 SCHEME)

Course Code: 21CA101

Course Name: Mathematical Foundations for Computing Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. If f and g are functions such that f(x) = 2x, g(x) = x + 1 for all $x \in R$ find (i) fog (ii) gof
- 2. Define a partial order relation.
- 3. Find *gcd* (306, 657)
- 4. Determine which of the following congruences are true and which are false (*i*) $12 \equiv 7 \pmod{5}$ (*ii*) $6 \equiv -8 \pmod{4}$ (*iii*) $3 \equiv 3 \pmod{7}$
- 5. Does there exist a 4-regular graph on 6 vertices? If so construct a graph.
- 6. Draw an undirected graph represented by the adjacency matrix

7. Find the eigen values of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

- 8. Check whether the vectors (1,-1,1), (0,1,2) and (3,0,-1) are independent or not.
- 9. Explain any one method of studying correlation.
- 10. What are the normal equations for fitting of a straight line y = a + bx.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. If R is a relation in the set Z defined by
R = {(x, y) |x ∈ Z, y ∈ Z, x − y is divisible by 3}. Prove that R is an (6) equivalence relation. Describe the distinct equivalence classes of R.

OR

12. If the function $f: R \to R$ defined by $f(x) = \begin{cases} 3x - 4, & x > 0 \\ -3x + 2, & x \le 0 \end{cases}$ (6) Determine (i) f(0), f(2/3), f(-2) (ii) $f^{-1}(0), f^{-1}(2), f^{-1}(-7)$.

447A2

(6)

MODULE II

13. Solve the recurrence relation
$$a_{n+2} + 4a_{n+1} + 4a_n = 7, n \ge 0, a_0 = 1, a_1 = 2$$
 (6)

OR

14. Solve the recurrence relation $a_{n+2} + 3a_{n+1} + 2a_n = (3)^n$; $a_0 = 0$, $a_1 = 1$. (6)

MODULE III

15.

Use Dijkstra's algorithm to find the shortest path from A to all other vertices.

OR

16.	a)	Define complete graph and bipartite graph.	(2)
	b)	Draw the graphs K7 and K2,6.	(4)

MODULE IV

17.	Deduce the matrix $A = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$	1 3-	to the diagonal form.	(6)
-----	--	---------	-----------------------	-----

OR

18. Show that the equations x + 2y - z = 0 3x + y - z = 0 and 2x - y = 0 have non-trivial solution and find them. (6)

MODULE V

19. Fit a linear equation y = a + bx to the following data.

-					U		
Х	0	1	2	3	4	5	(6)
у	0	5	7	9	11	13	

OR

20. Calculate Karl Pearson's coefficient of correlation between the following data.

x	39	65	62	90	82	75	25	98	36	78	
У	47	53	58	86	62	68	60	91	51	84	