SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.C.A DEGREE EXAMINATION (S), FEBRUARY 2023 (2021 SCHEME)

Course Code:
Course Name:
Max. Marks:

21 CA101
Mathematical Foundations for Computing
60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. If f and g are functions such that $f(x)=2 x, g(x)=x+1$ for all $x \in R$ find
(i) fog
(ii) gof
2. Define a partial order relation.
3. Find $\operatorname{gcd}(306,657)$
4. Determine which of the following congruences are true and which are false
(i) $12 \equiv 7(\bmod 5)$
(ii) $6 \equiv-8(\bmod 4)$
) $($ iii $) 3 \equiv 3(\bmod 7)$
5. Does there exist a 4-regular graph on 6 vertices? If so construct a graph.
6. Draw an undirected graph represented by the adjacency matrix

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

7. Find the eigen values of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

8. Check whether the vectors $(1,-1,1),(0,1,2)$ and $(3,0,-1)$ are independent or not.
9. Explain any one method of studying correlation.
10. What are the normal equations for fitting of a straight line $y=a+b x$.

PART B
 (Answer one full question from each module, each question carries 6 marks) MODULE I

11. If R is a relation in the set Z defined by $R=\{(x, y) \mid x \in Z, y \in Z, x-y$ is divisible by 3$\}$. Prove that R is an
equivalence relation. Describe the distinct equivalence classes of R .
OR
12. If the function $f: R \rightarrow R$ defined by
$f(x)=\left\{\begin{aligned} 3 x-4, & x>0 \\ -3 x+2, & x \leq 0\end{aligned}\right.$
Determine (i) $f(0), f(2 / 3), f(-2) \quad$ (ii) $f^{-1}(0), f^{-1}(2), f^{-1}(-7)$.

MODULE II

13. Solve the recurrence relation $a_{n+2}+4 a_{n+1}+4 a_{n}=7, n \geq 0, a_{0}=1, a_{1}=2$

OR
14. Solve the recurrence relation $a_{n+2}+3 a_{n+1}+2 a_{n}=(3)^{n} ; a_{0}=0, a_{1}=1$.

MODULE III

15.

Use Dijkstra's algorithm to find the shortest path from A to all other vertices.

> OR
16. a) Define complete graph and bipartite graph.
b) Draw the graphs K_{7} and $K_{\mathbf{2}, \mathbf{6}}$.

MODULE IV
17. Deduce the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ to the diagonal form.

OR

18. Show that the equations
$x+2 y-z=0$
$3 x+y-z=0$ and
$2 x-y=0 \quad$ have non-trivial solution and find them.

MODULE V

19. Fit a linear equation $y=a+b x$ to the following data.

x	0	1	2	3	4	5
y	0	5	7	9	11	13

OR
20. Calculate Karl Pearson's coefficient of correlation between the following data.

x	39	65	62	90	82	75	25	98	36	78
y	47	53	58	86	62	68	60	91	51	84

