Name:

B

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (S), FEBRUARY 2023

(2020 SCHEME)

Course Code: 20IMCAT103 Course Name: **Basic Mathematics** 60

Max. Marks:

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- If $U = \{x: x \text{ is an English alphabet}\}$ and $A = \{x: x \text{ is a vowel of English}\}$ 1. alphabet}, then write the complement of A.
- 2. Define a cartesian product of two sets with example.
- 3. Let A = $\{1,2,3,4\}$ and R be a relation defined on A such that R = $\{(a, b); a\}$ divides b}. List the elements in R.
- 4. Define a reflexive relation with an example and how many reflexive relations are there on a set with n elements.
- Does the formula $f(x) = \frac{1}{x^2 3}$, define (i) a function from $R \to R$ (ii) a function 5. from $R \rightarrow R$
- Let f_1 and f_2 be functions from R to R such that $f_1(x) = x^2$ and $f_2(x) = x x^2$. 6. What are the functions $f_1 + f_2$ and $f_1 f_2$
- Find the derivative of $v = 3x^5 + 4x^2$ 7.
- 8. Find y'(x) for $y(x) = (x^2 + 2)(2x - 1)$
- 9. Compute $\int (x^2 + \sqrt{x}) dx$
- 10. State the fundamental theorem of calculus.

PART B

(Answer one full question from each module, each question carries 6 marks) **MODULE I**

11. a)	Verify De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$	(4)

b) Define a complement of a set with an example. (2)

OR

- 12. Prove the distributive law $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for all a) (4) sets A, B and C.
 - Find the cartesian product of $A = \{1,2\}$ and $B = \{a, b, c\}$. b) (2)

887A2

MODULE II

- 13. a) Let $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$ be the (4) relations defined on sets A = $\{1, 2, 3\}$ and B = $\{1, 2, 3, 4\}$ respectively, then find
 - (I) $R_1 \cup R_2$
 - (ii) $R_1 \cap R_2$
 - (iii) $R_1 R_2$
 - (iv) $R_2 R_1$
 - b) What are the elements in the relation R defined on {1,2,3,4} (2) represented by the given matrix

[1	1	0	1]
1 1 0 1	0	1	1 0 1 1
0	1	1	1
[1	0	1	1

OR

14. a)

Β

(3)

Let *R* be the relation on the set of real numbers such that xRy if and only if |x - y| < 1. Show that R is not an equivalence relation.

b) In the poset $(Z^+,/)$ are the integers 3 and 9 comparable? What (3) about 5 and 7?

MODULE III

15. Let $f: Z \to Z$ be the function defined by f(x) = x + 1. Is f an invertible (6) function? If it is invertible, what is its inverse?

OR

16. a) Define composition of functions.(2)b) Let $f, g: Z \to Z$ be two functions defined by f(x) = 2x + 3 and(4)g(x) = 3x + 2. Find fog and gof.

MODULE IV

17. a) Calculate the value of the derivative for
$$y(x) = \left(x - \frac{1}{x}\right)^2$$
 at x=1. (3)

b) Evaluate
$$\frac{d^2y}{dx^2}$$
 for $y = 3tanx + 5sin^2x$. (3)

OR

- 18. a) Use implicit differentiation to find $\frac{dy}{dx}$ for $x^2y + xy^2 = 6.$ (3)
 - b) Evaluate h'(x) for $h(x) = xtan(2\sqrt{x}) + 7$. (3)

887A2

(3)

MODULE V

19. a) Evaluate the indefinite integral
$$\int \frac{9r^2}{\sqrt{1-r^3}} dr$$
 (3)

b) Compute $\int [5x + \frac{2}{3x^5}]dx$

OR

- 20. a) State the mean value theorem for definite integral. (2)
 - b) Find the area of the region bounded by $y = 3x x^2$ and the x-axis (4)
