SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (S), FEBRUARY 2023 (2020 SCHEME)
Course Code: 20IMCAT103
Course Name: Basic Mathematics
Max. Marks: 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. If $U=\{x: x$ is an English alphabet $\}$ and $A=\{x: x$ is a vowel of English alphabet $\}$, then write the complement of A.
2. Define a cartesian product of two sets with example.
3. Let $A=\{1,2,3,4\}$ and R be a relation defined on A such that $R=\{(a, b) ; a$ divides b$\}$. List the elements in R .
4. Define a reflexive relation with an example and how many reflexive relations are there on a set with n elements.
5. Does the formula $f(x)=\frac{1}{x^{2}-3}$, define (i) a function from $R \rightarrow R$ (ii) a function from $R \rightarrow R$
6. Let f_{1} and f_{2} be functions from R to R such that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x-x^{2}$. What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$
7. Find the derivative of $y=3 x^{5}+4 x^{2}$
8. Find $y^{\prime}(x)$ for $y(x)=\left(x^{2}+2\right)(2 x-1)$
9. Compute $\int\left(x^{2}+\sqrt{x}\right) d x$
10. State the fundamental theorem of calculus.

PART B

(Answer one full question from each module, each question carries $\mathbf{6}$ marks)

MODULE I

11. a) Verify De Morgan law $\overline{A \cap B}=\bar{A} \cup \bar{B}$
b) Define a complement of a set with an example

OR

12. a) Prove the distributive law $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ for all sets A, B and C.
b) Find the cartesian product of $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.

MODULE II

13. a) Let $R_{1}=\{(1,1),(2,2),(3,3)\}$ and $R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$ be the relations defined on sets $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2,3,4\}$ respectively, then find
(I) $R_{1} \cup R_{2}$
(ii) $R_{1} \cap R_{2}$
(iii) $R_{1}-R_{2}$
(iv) $R_{2}-R_{1}$
b) What are the elements in the relation R defined on $\{1,2,3,4\}$ represented by the given matrix

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

OR

14. a)

Let R be the relation on the set of real numbers such that $x R y$ if and only if $|x-y|<1$. Show that R is not an equivalence relation.
b) In the poset $\left(Z^{+}, /\right)$are the integers 3 and 9 comparable? What about 5 and 7 ?

MODULE III

15. Let $f: Z \rightarrow Z$ be the function defined by $f(x)=x+1$. Is f an invertible function? If it is invertible, what is its inverse?

OR

16. a) Define composition of functions.
b) Let $f, g: Z \rightarrow Z$ be two functions defined by $f(x)=2 x+3$ and
$g(x)=3 x+2$. Find fog and gof.

MODULE IV

17. a) Calculate the value of the derivative for $y(x)=\left(x-\frac{1}{x}\right)^{2}$ at $\mathrm{x}=1$.
b) Evaluate $\frac{d^{2} y}{d x^{2}}$ for $y=3 \tan x+5 \sin ^{2} x$.

OR

18. a) Use implicit differentiation to find $\frac{d y}{d x}$ for $x^{2} y+x y^{2}=6$.
b) Evaluate $h^{\prime}(x)$ for $h(x)=x \tan (2 \sqrt{x})+7$.

MODULE V

19. a) Evaluate the indefinite integral $\int \frac{9 r^{2}}{\sqrt{1-r^{3}}} d r$
b) Compute $\int\left[5 x+\frac{2}{3 x^{5}}\right] d x$

OR
20. a) State the mean value theorem for definite integral.
b) Find the area of the region bounded by $y=3 x-x^{2}$ and the x -axis

