B.A DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, OCTOBER 2022

Second Semester

B.A Corporate Economics Model III

Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II
 2017 ADMISSION ONWARDS

3CC7EA1F
Time: 3 Hours
Max. Marks : 80

Part A
Answer any ten questions.
Each question carries 2 marks.

1. Find the derivative of $\frac{1}{x^{2}}$
2. Find the derivative of $\frac{\log x}{x}$
3. If $y=3 x^{3}-2 x^{2} \quad$ find y_{2}
4. Distinguish between assignment and transportation problems.
5. How will you solve maximisation problems using assignment techniques?
6. Define feasible solution in transportation problem.
7. Write a short note on Vogel's method.
8. What are unbalanced problems? How are they solved?
9. Define rank of amatrix with example.
10.

Show that $\left(\begin{array}{ccc}3 & 4 & 2 \\ 0 & 1 & -3 \\ 2 & -2 & 8\end{array}\right)$ is nonsingular.
11. Explain union of two sets with example.
12. Represent $(A \cap B)^{c}$ using venn diagram.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Differentiate $x^{\frac{1}{3} e^{x}}$
14. Find

$$
\frac{d y}{d x}
$$

if $\quad x^{2}-y^{2}+3 x=5 y$
15. Discuss any method for solving assignment problems.
16. Explain lowest cost entry method.
17. Explain elementary transformations.
18.

Find the inverse of the matrix $\left(\begin{array}{cc}2 & 3 \\ 4 & 5\end{array}\right)$
19. Explain Roster method and set builder method.
20. Different types of sets.
21. If $\mathrm{A}=\{1,2,3,5\}, \mathrm{B}=\{2,3,4\}, \mathrm{C}=\{1,2,3,4\}$ find $(A \cap B) \times C$

Part C

Answer any two questions.
Each question carries 15 marks.
22. If $\mathrm{y}=x^{2} \log x$, prove that $\quad x^{2} y_{2}-x y_{1}=2 x^{2}$
23. A department head has four tasks to be performed and three subordinates. The subordinates differ in efficiency .The estimates of time, each subordinate would like to perform is given below in the matrix. How should he allocate the task one to each man, as to minimise the total man hour

	1	2	3
A	9	26	15
B	13	27	6
C	35	20	15
D	18	30	30

24. Find the initial feasible solution to the transportation problem given below by North west corner rule

	A	B	C	D	Supply
P	21	16	15	3	11
Q	17	18	14	23	13
R	32	27	18	41	19
Demand	6	10	12	15	

25.

Reduce the matrix $\left(\begin{array}{cccc}1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5\end{array}\right)$ into canonical form

