Name:

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

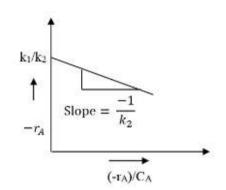
FIFTH SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 CHEMICAL ENGINEERING

(2020 SCHEME)

Course Code : 20CHT305

Course Name: Chemical Reaction Engineering

Max. Marks : 100


Duration: 3 Hours

Graph sheets may be provided.

PART A

(Answer all questions. Each question carries 3 marks)

1. For the figure below, write a suitable rate expression.

- 2. The half-life period for a certain first order reaction is 2.5×10^3 s. Determine the time taken for $1/3^{rd}$ of the reactant to be left behind.
- 3. Define space time and space velocity.
- 4. State the performance equation of a mixed flow reactor with its significance.
- 5. Explain a recycle reactor with recycle ratio.
- 6. Describe autocatalytic reaction with a suitable example.
- 7. Differentiate between equilibrium conversion and adiabatic equilibrium conversion.
- 8. Highlight the relation between equilibrium conversion and equilibrium constant.
- 9. Outline the significance of dispersion coefficient in non-ideal flow.
- 10. Mention the reasons for non-ideality in reactors.

581A2

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Variation of the rate constant with temperature for the reaction is (8) given in the following table.

 $2N_2O_5 \rightarrow 2 N_2O_4 + O_2$

,	Temp. (K)	298	308	318	328	338
	k (s-1)	1.74×10^{-5}	6.61×10 ⁻⁵	2.51×10^{-4}	7.59×10-4	2.40×10 ⁻³

Determine graphically, the activation energy for the reaction and frequency factor.

b) In a batch reactor, the conversion of $A \rightarrow R$, $C_{A0} = 1 \text{ mol/L is } 75\%$ (6) after 1 hour. The reaction got completed after 2 hours. Find rate equation to represent this kinetics.

OR

- 12. a) Liquid A decomposes by second order kinetics in a batch reactor (6) and 50% of A is converted in a 5-minute. How much longer would it take to reach 75% conversion?
 - b) Derive the performance equation for a batch reactor for constant (8) density and variable density systems for a first order reversible reaction.

MODULE II

- 13. a) A homogeneous gas phase decomposition reaction $4A \rightarrow B + 7S$ (7) takes place in an isothermal ideal plug flow reactor. The reaction rate is, $-r_A = k_1C_A$ with $k_1 = 0.17 \text{ s}^{-1}$; feed concentration of A (C_{Ao}) = 0.1 mol/m^3 ; feed flow rate (F_{Ao}) = 0.17 mol/s. Determine the size of the reactor to achieve 50% conversion
 - b) Derive the performance of plug flow reactor for constant and (7) variable volume systems.

OR

14 Consider a feed $C_{AO} = 100 \text{ mol/L}$, $C_{BO} = 200 \text{ mol/L}$ which enters a (14) reactor at 1000 K and 5 atm. The gas phase reaction is $A + B \rightarrow 5R$. The stream leaves the reactor at 400 K, 4 atm and $C_A = 20 \text{ mol/L}$. Calculate the X_{A} , X_{B} and concentration of B.

MODULE III

- 15. a) Explain the graphical method of determining the conversion in the (8) case of unequal size mixed flow reactors connected in series.
 - b) Show that the performance of N equal sized CSTRs in series is equivalent to a plug flow reactor. (6)

581A2

С

OR

- 16. a) A CSTR and a PFR of equal volume V each are given for the (8) conduct of a second order, isothermal, liquid phase reaction, A→B. The reactors are to be arranged in series. Find the overall conversion for the two possible reactor arrangements. Data given: k = 1 m³/(kmol·s), C_{Ao} = 0.1 kmol/m³ and τ = 5 s (for volume V).
 - b) Derive the expression of recycle ratio for a first order reaction in (6) recycle reactor.

MODULE IV

17. Determine the equilibrium conversion for the elementary aqueous (14) reaction between 0 to 100 $^{\circ}$ C.

$$A \leftrightarrow R$$

$$\Delta G_{298}^{0} = -14130 \text{ J/mol}$$

$$\Delta H_{298}^{0} = -75300 \text{ J/mol}$$

$$C_{PA} = C_{PR} = \text{Constant}$$

Express the results in the form of a plot of temperature vs equilibrium conversion. What restriction should be placed on the reactor operating isothermally to reach a conversion greater than 75%.

OR

- 18. a) Explain optimum temperature progression for irreversible (6) reactions, reversible exothermic and endothermic reactions.
 - b) Derive the expression for finding out the conversion of adiabatic (8) and non-adiabatic reactor.

MODULE V

19. An RTD analysis was carried out in a liquid phase reactor using step (14) input. Analyze the following data

Time (s)	1	150	175	200	225	250	275	300	325	350	375	400	450
C×10 ³ (g/dm ³)	0	0	1	3	7.4	9.7	8.2	5	2.5	1.2	0.5	0.2	0

- i) Tabulate and plot E(t) values. (7 marks)
- ii) What fraction of material spends between 230 s and 270 s in the reactor? (3 marks)
- iii) Tabulate F(t) values. (4 marks)

OR

- 20. a) Derive the expression for number of tanks using the tanks in (10) series model for CSTRs in series
 - b) Write short notes on (i) mean residence time and (ii) cumulative (4) distribution function