SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 FOOD TECHNOLOGY (2020 SCHEME)

Course Code:
Course Name:
Max. Marks: 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is a sugar found in honey and fruits. The sweetest sugar, it is nearly twice as sweet as sucrose. How much water should be added to 1.75 g of fructose to give a 0.125 m solution of Fructose?
2. Milk is flowing through a pipe whose diameter is known to be 1.8 cm . The only measure available is a tank calibrated in ft^{3} and it is found that it takes 1 Hr to fill $12.4 \mathrm{ft}^{3}$. What is the velocity of the liquid in the pipe?
3. Explain the terms
i. Limiting reactant
ii. Excess Reactant
iii. Yield
4. Define heat of reaction and its types?
5. State Newton's Law of Viscosity
6. Calculate the specific weight, density and specific gravity of two liters of a liquid which weight 15 N
7. Interpret the Bernoulli's equation for real fluid.
8. Interpret the Darcy Weishback equation.
9. Explain different types of pumps.
10. Depict the working principle of Orifice meter.

PART B

(Answer one full question from each module, each question carries 14

 marks)MODULE I
11. A binary mixture consists of 35% benzene and 65% toluene are continuously fed to the distillation column at a rate of $1000 \mathrm{~kg} / \mathrm{hr}$. Whereas, the distillate flow rate was 10% from the feed flow rate. The distillate (top product) contains 85% benzene. Calculate quantity and compositions of the waste stream.

OR

12. a) In the processing of fish, after oil is extracted, the fish cake is dried in rotary drum drier, finely ground and packed. The resulting product contains 65% of protein, in a given batch of fish cake that contains 80% water (remaining is dry cake). 100 kg of water is removed and is found that the fish cake is then 40% water. Calculate the weight of fish cake originally put into drier.
b) How much glucose syrup with 20% concentration has to be mixed with 100 kg glucose syrup with 40% concentration so that the mixture will have 36% glucose?

MODULE II

13. a) The CO is reacted with H_{2} to Produce $\mathrm{CH}_{3} \mathrm{OH}$ (Methanol). Calculate:
i. Stoichiometry ratio of $\mathrm{H}_{2} \& \mathrm{CO}$
ii. KgMol of $\mathrm{CH}_{3} \mathrm{OH}$ produced per 50 KgMol of CO reactant
iii. Weight ratio of $\mathrm{CO} \& \mathrm{H}_{2}$ (Fed in stoichiometric proportion)

Use of the Chemical Equation to Calculate the Mass of Reactants Given the mass of Products:

$$
\begin{equation*}
\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \longrightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \tag{7}
\end{equation*}
$$

b) In the combustion of heptane, CO_{2} is produced. Assume that you want to produce 500 kg of dry ice per hour, and that 50% of the CO_{2} can be converted into dry ice, how many kilograms of heptane must be burned per hour?

OR

14. a) $1000 \mathrm{~kg} / \mathrm{h}$ of milk is heated in a heat exchanger from $45^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. Water is used as the heating medium. It enters the heat exchanger at $90^{\circ} \mathrm{C}$ and leaves at $75^{\circ} \mathrm{C}$. Calculate the mass flow rate of the heating medium, if the heat losses to the environment are equal to 1 kW . The heat capacity of water is given equal to $4.2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ and that of milk $3.9 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$.
b) How much saturated steam with 120.8 kPa pressure is required to heat $1000 \mathrm{~g} / \mathrm{h}$ of juice from $5^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$? Assume that the heat capacity of the juice is $4 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$.

MODULE III

15. Derive the calculation of pressure of different types of simple and differential manometer with neat sketch.

OR
16. Explain the physical properties of fluids and type of fluids with examples.

MODULE IV

17. Starting from Euler's equation of motion derive Bernoulli's and list out relevant assumption.

OR

18. Derive Hagen Poiseuille equation for steady laminar flow of Newtonian fluid in a uniform cylindrical tube.

MODULE V

19. Explain the various types of pumps with near sketch and their applications.

OR

20. Outline the co-efficient of discharge of a orifice meter.
