Register No.:

..... Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 COMMON TO CE,CH,EC,EE,FT,ME,RA

(2020 SCHEME)

Course Code : 20MAT201

Course Name: Partial Differential Equations and Complex Analysis

Max. Marks : 100

Duration: 3 Hours

Non-programmable calculator may be permitted

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Form a first order partial differential equation from z = ax + by + ab by eliminating the arbitrary constants.
- 2. Solve the Lagrange's linear partial differential equation p + q = 1.
- 3. Write the general form of one-dimensional wave equation and give any three assumptions for solution of the one-dimensional wave equation.
- 4. Write the three possible solution of a one-dimensional heat equation.
- 5. Prove that the identity function is analytic everywhere in the complex plane.
- 6. Show that $v = 3x^2y y^3$ is harmonic.
- 7. Evaluate $\int_C \bar{z} dz$, where C is |z| = 1.
- 8. Evaluate $\int_0^{1+i} (x y ix^2) dz$ along the parabola $y = x^2$.
- 9. Determine the nature and type of singularity of $\frac{e^{-z^2}}{z^2}$.
- 10. Find the residue of the function $\frac{1}{z^2-1}$ at its poles.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11.	a)	Solve the PDE $(y - z)p + (x - y)q = (z - x)$.	(7)
-----	----	---	-----

b) Solve $\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} - u = 0$, given that $u(x, 0) = 6e^{-3x}$, using the (7) method of separation of variables.

OR

- 12. a) Solve $px qy = y^2 x^2$, using the Lagrange's method. (7)
 - b) Using the method of separation of variables solve $u_{xy} u = 0.$ (7)

839A4

Α

Total Pages: **3**

(7)

MODULE II

- 13. a) Derive the solution of one-dimensional wave equation by the (7) method of separation of variables.
 - b) A rod of length π is heated in such a way that its ends A and B (7) are at zero temperature. If initially its temperature is given by $u = \pi x x^2$, $0 \le x \le \pi$, find the temperature at time t.

OR

- 14. a) A tightly stretched string of length l is fastened at both ends. (7) Motion is started by displacing the string into the form of the curve y = kx(l-x), $0 \le x \le l$, from which it is released at time t = 0. Find the displacement of any point on the string at a distance x from one end.
 - b) Derive the solution of one-dimensional heat equation by the (7) method of separation of variables.

MODULE III

- 15. a) Prove that an analytic function with constant real part is (7) constant.
 - b) Show that $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic and find the (7) corresponding analytic function.

OR

- 16. a) Derive Cauchy-Reimann Equations. (7)
 b) Determine the region of the w-plane into which the triangular (7)
 - region bounded by x = 1, y = 1 and x + y = 1 is mapped by $w = z^2$. (7)

MODULE IV

- 17. a) (7) Evaluate $\int_C \frac{z^2+3}{(z-2)^2} dz$ where C is |z| = 3.
 - b) Expand $f(z) = \frac{1}{1+z}$ as a Taylor's series about z = 3. Also state the (7) region of validity.

OR

- 18. a) Evaluate $\int_C \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$, where *C* is the circle |z| = 3.
 - b) Evaluate $\int_C \frac{\log(z)}{(z-4)^2} dz$ counter clock-wise around the circle (7) |z-3| = 2.

839A4

MODULE V

19.	a)	Using Cauchy's Residue theorem, evaluate $\int_{C} \frac{z^2}{(z-1)^2(z+2)} dz$ where	(7)
		C is $ z = 1.5$.	

b) Using contour integration evaluate $\int_0^\infty \frac{1}{(x^2+a^2)^2} dx.$ (7)

OR

20. a) Evaluate
$$\int_C \frac{dz}{z^2(z-1)}$$
 where C is $|z|=2$. (7)

b) Evaluate the real integral, $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+a^2)(x^2+b^2)} dx$ using residue (7) theorem.

A