SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 COMMON TO CE,CH,EC,EE,FT,ME,RA
(2020 SCHEME)
Course Code : 20MAT201
Course Name: Partial Differential Equations and Complex Analysis
Max. Marks : 100
Duration: 3 Hours

Non-programmable calculator may be permitted

PART A

(Answer all questions. Each question carries 3 marks)

1. Form a first order partial differential equation from $z=a x+b y+a b$ by eliminating the arbitrary constants.
2. Solve the Lagrange's linear partial differential equation $p+q=1$.
3. Write the general form of one-dimensional wave equation and give any three assumptions for solution of the one-dimensional wave equation.
4. Write the three possible solution of a one-dimensional heat equation.
5. Prove that the identity function is analytic everywhere in the complex plane.
6. Show that $v=3 x^{2} y-y^{3}$ is harmonic.
7. Evaluate $\int_{C} \bar{z} d z$, where C is $|z|=1$.
8. Evaluate $\int_{0}^{1+i}\left(x-y-i x^{2}\right) d z$ along the parabola $y=x^{2}$.
9. Determine the nature and type of singularity of $\frac{e^{-z^{2}}}{z^{2}}$.
10. Find the residue of the function $\frac{1}{z^{2}-1}$ at its poles.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Solve the $\operatorname{PDE}(y-z) p+(x-y) q=(z-x)$.
b) Solve $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}-u=0$, given that $u(x, 0)=6 e^{-3 x}$, using the method of separation of variables.

OR

12. a) Solve $p x-q y=y^{2}-x^{2}$, using the Lagrange's method.
b) Using the method of separation of variables solve $u_{x y}-u=0$.

MODULE II

13. a) Derive the solution of one-dimensional wave equation by the method of separation of variables.
b) A rod of length π is heated in such a way that its ends A and B are at zero temperature. If initially its temperature is given by $u=\pi x-x^{2}, 0 \leq x \leq \pi$, find the temperature at time t .

OR
14. a) A tightly stretched string of length l is fastened at both ends. Motion is started by displacing the string into the form of the curve $y=k x(l-x), 0 \leq x \leq l$, from which it is released at time $t=0$. Find the displacement of any point on the string at a distance x from one end.
b) Derive the solution of one-dimensional heat equation by the method of separation of variables.

MODULE III

15. a) Prove that an analytic function with constant real part is constant.
b) Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find the corresponding analytic function.

OR

16. a) Derive Cauchy-Reimann Equations.
b) Determine the region of the w-plane into which the triangular region bounded by $x=1, y=1$ and $x+y=1$ is mapped by

$$
w=z^{2} .
$$

MODULE IV

17. a)

Evaluate $\int_{C} \frac{z^{2}+3}{(z-2)^{2}} d z$ where C is $|z|=3$.
b) Expand $f(z)=\frac{1}{1+z}$ as a Taylor's series about $z=3$. Also state the region of validity.

OR

18. a)

Evaluate $\int_{C} \frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$.
b) Evaluate $\int_{C} \frac{\log (z)}{(z-4)^{2}} d z$ counter clock-wise around the circle $|z-3|=2$.

MODULE V

19. a) Using Cauchy's Residue theorem, evaluate $\int_{C} \frac{z^{2}}{(z-1)^{2}(z+2)} d z$ where C is $|z|=1.5$.
b) Using contour integration evaluate $\int_{0}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)^{2}} d x$.

OR

20. a) Evaluate $\int_{C} \frac{d z}{z^{2}(z-1)}$ where C is $|z|=2$.
b) Evaluate the real integral, $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$ using residue theorem.
