SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 COMPUTER SCIENCE AND ENGINEERING
(2020 SCHEME)

Course Code:
Course Name:
Max. Marks:
100 20CST203

Logic System Design
Duration: 3 Hours

PART A
 (Answer all questions. Each question carries 3 marks)

1. Find the value of \mathbf{b} ? given that $16_{10}=100_{b}$
2. Write short notes on ASCII, EBCDIC with suitable example?
3. State and Prove De Morgan's Theorem?
4. Show that $\mathrm{A} \bar{B} \mathrm{C}+\mathrm{B}+\bar{A} \mathrm{C}+\mathrm{A} B \bar{D}+B \bar{D}=\mathrm{B}+\mathrm{C}$
5. Realize a 2-bit magnitude comparator.
6. What are the differences between serial and parallel adders?
7. Construct D flip- flop using NAND gates. Also give its excitation Table.
8. What is the difference between a latch and a flip-flops.
9. What is ROM ? Explain with Diagram.
10. What is the basic architecture of Programmable Logic Array?

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

11. a) Perform the following operations in 8421 BCD code(i) $679.6+536.8$
(ii) 206.7-147.8, Show the steps clearly
b) Divide 32 by 5 in binary using the computer method.

OR

12.

a) Perform the following operations (i) $25_{8}-73_{8}$
(ii) $3 A_{16}-5 D_{16}$
b) Find the 16 bit 2's complement representation of the following Binary numbers. (i) +1001010 (ii) - 11110000 (iii) - 11001100.1

MODULE II

13. a) Realize a XNOR circuit using NAND gate only.
b) Minimize in SOP and POS forms on the K-Map the 5-Variable function.
$\mathrm{F}=\Sigma \mathrm{m}(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31)$

OR

14. a) Using K-map, simplify the Boolean Function F in SOP form, using the don't care conditions $d: F(w, x, y, z)=w^{\prime}\left(x^{\prime} y+x^{\prime} y^{\prime}+x y z\right)+x^{\prime} z^{\prime}(y$ $+w) d(w, x, y, z)=w^{\prime} x\left(y^{\prime} z+y z '\right)+w y z$.
b) Expand $\mathrm{A}(\bar{B}+\mathrm{A}) \mathrm{B}$ to maxterms and minterms.

MODULE III

15. a) Implement a Full Adder circuit using $4: 1$ MUX.
b) With a neat diagram explain 4-bit carry look-ahead adder.

OR

16. a) Design and implement a code converter for converting 4-bit Gray to Binary code.
b) Implement Half Subtractor circuit using NOR gate only.

MODULE IV

17. a) Set up an asynchronous Counter that count the sequence $1,3,5,7$ with minimum number of flip-flops.
b) Design a synchronous 3-bit Binary Up-Down Counter using JKFF.

OR

18. a) Write short notes on Master Slave JK flip-flop ?
b) Design a counter that count the states $3,4,6,7$ and $3 \ldots$ using JK flip- flops.Is the counter is self-starting ?

MODULE V

19. a) Draw the logic diagram of a 4-bit bidirectional serial in serial out (SISO) shift register with mode control and explain the working with timing diagram.
b) Write an algorithm for floating point subtraction.
