SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) THIRD SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 CIVIL ENGINEERING (2020 SCHEME)
Course Code:
20CET203
Course Name: Fluid Mechanics and Hydraulics
Max. Marks: 100
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Explain the working principle of a manometer.
2. Define the terms (i) Total Pressure (ii) Centre of Pressure
3. Illustrate the stability conditions of a floating body through neat sketches.
4. Differentiate between laminar and turbulent flow in pipes.
5. Explain the working principle of a pitot tube.
6. Explain Hydraulic gradient line and Energy gradient line with the help of a neat sketch.
7. Differentiate between open channel flow and pipe flow.
8. Relate Chezy's constant ' C ' and Manning's roughness coefficient ' N '.
9. Sketch the specific energy diagram.
10. Show the flow profile variation through neat sketches in case of mild sloped and steep sloped channel in various zones.

PART B
(Answer one full question from each module, each question carries 14 marks) MODULE I
11. a) An inverted differential manometer containing an oil of specific gravity 0.9 is connected to find the difference of pressure at two points of a pipe containing water. If the manometer reading is 400 mm , calculate the difference in pressures in meters of water
b) Show that the intensity of pressure at a point in a fluid at rest is equal in all directions.

OR

12. a) Deduce the expression for total pressure and position of center of pressure for a plane surface immersed vertically in a fluid.
b) A sector gate in the form of a circular arc of radius 5 m retains water to a height of 4 m above its sill as shown in the Figure 1. Calculate the magnitude and direction of the resultant force per unit length of the gate.

Figure 1
MODULE II
13. a) Determine the metacentric height of a cylinder having a diameter of 5 m and a height of 5 m given the specific gravity of cylinder material as 0.6 and also it is floating in water with its axis vertical. State whether equilibrium is stable or unstable.
b) A pontoon has displacement of 20 MN whilst floating in sea water. When a load of 0.25 MN is moved through a distance of 8 m across the deck, there occurs a horizontal displacement of 0.15 m in a pendulum 3 m long. Compute the metacentric height of the pontoon.

OR

14. a) Derive the continuity equation in three dimensions for steady and incompressible fluid flow.
b) The velocity along the centreline of a nozzle of length L is given by

$$
V=2 t\left(1-\frac{x}{2 L}\right)^{2}
$$

Where V is the velocity in m / s, t is the time in seconds from commencement of flow and X is the distance from inlet to the nozzle. Calculate the local acceleration, convective acceleration and the total acceleration when $t=6 \mathrm{~s}, x=1 \mathrm{~m}$ and $L=1.6 \mathrm{~m}$.

MODULE III

15. a) A venturimeter having a diameter of 7.5 cm at the throat and 15 cm at the enlarged end is installed in a horizontal pipeline of 15 cm diameter. Rate of flow of fluid in the pipe is 30 litres $/ \mathrm{sec}$. The difference of pressure head measured between the enlarged section and the throat section is 2.45 m . Find the coefficient of discharge of the venturimeter.
b) The head of water over an orifice of diameter 100 mm is 12 m . The water coming out from the orifice is collected in a rectangular tank 2 mX 0.9 m . The rise of water level in this tank is 1.2 m in 30 seconds. Find the coefficient of discharge

OR

16. Two reservoirs are connected by a pipeline consisting of two pipes, one of 15 cm diameter and length 6 m and the other of diameter 22.5 cm and 16 m length. If the difference of water levels in the two reservoirs is 6 m , calculate the discharge.

MODULE IV

17. a) Determine the dimensions of a channel of rectangular crosssection so as to obtain a discharge of $6001 / \mathrm{sec}$ with least cost. The slope of the bed is 1 in 1800. Take Chezy's constant C as 50.
b) Discuss the various geometric elements of an open channel.

OR

18. a) A suppressed rectangular weir is constructed across a channel of 0.77 m width with a head of 0.39 m and crest 0.6 m above the bed of the channel. Estimate the discharge over it. Consider velocity of approach and take $\mathrm{C}_{\mathrm{d}}=0.623$.
b) Differentiate Cipolletti weir from any other trapezoidal weirs.

MODULE V

19. a) Determine specific energy and critical depth of a 10 m wide rectangular channel with discharge $20 \mathrm{~m}^{3} / \mathrm{s}$ and a depth of 800 mm.
b) Derive the dynamic equation of gradually varied flow clearly stating the assumptions underlying it.

OR

20. a) A sluice gate discharges water into a horizontal rectangular channel with a velocity of $10 \mathrm{~m} / \mathrm{s}$ and depth of flow 1 m . Calculate the depth of flow of water after the jump and consequent loss in total head.
b) Explain the procedure for computing the water surface profile by direct step method.
