Name:

Β

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022

VLSI AND EMBEDDED SYSTEMS

(2021 Scheme)

Course Code: 21VE102

Course Name: Advanced Digital Design

Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Design and sketch a 110 sequence detector using Moore machine.
- 2. Sketch the logic circuit for the following Boolean function. F= AB'+BC. Analyze the possibility of Static 1 hazard in the circuit.
- 3. Sketch the circuit of a 3-bit parallel load shift right register and explain.
- 4. Draw the high-level state diagram for a Soda Dispensing system processor.
- 5. Define clock skew and jitter.
- 6. Describe any two methods for avoiding clock skew.
- 7. Explain the approach for automated two-level logic size optimization.
- 8. Define state encoding.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

9. Draw the Mealy State Diagram and State Table of sequence detector to detect input sequences 0110. (6)

OR

10. Design and draw the circuit for modulo 5 counter and write down the Verilog HDL code for it. (6)

MODULE II

11. Explain static hazards with an example. (6)

OR

12. Differentiate critical race and non-critical race. (6)

MODULE III

13. Design and sketch a 4 bit carry-ripple adder and explain. (6)

OR

Page 1 of 2

14.	Design a 4-bit equality comparator and sketch the circuit diagram.	(6)
MODULE IV		
15.	Explain the standard controller architecture for implementing an FSM as a sequential circuit.	(6)
OR		
16.	Describe significance of Micro-programmed control unit in microprocessor design. Explain few control signal generations.	(6)
MODULE V		
17.	Explain the general method for RTL design.	(6)
OR		
18.	Design a processor for a soda dispenser and sketch the circuit.	(6)
MODULE VI		
19.	For the following functions, find all of the prime implicants using the Quine-McCluskey method. $f(a, b, c, d) = \Sigma m(0 \ 3 \ 5 \ 7 \ 8 \ 14 \ 13)$, Realize the optimized logic circuit.	(6)
OR		
20.	Explain carry-lookahead adder.	(6)

855A2

Β

Total Pages: ${f 2}$