SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022VLSI AND EMBEDDED SYSTEMS(2021 Scheme)
Course Code: 21VE102
Course Name: Advanced Digital Design
Max. Marks: 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Design and sketch a 110 sequence detector using Moore machine.
2. Sketch the logic circuit for the following Boolean function. $\mathrm{F}=\mathrm{AB}+\mathrm{BC}$. Analyze the possibility of Static 1 hazard in the circuit.
3. Sketch the circuit of a 3-bit parallel load shift right register and explain.
4. Draw the high-level state diagram for a Soda Dispensing system processor.
5. Define clock skew and jitter.
6. Describe any two methods for avoiding clock skew.
7. Explain the approach for automated two-level logic size optimization.
8. Define state encoding.

PART B
(Answer one full question from each module, each question carries $\mathbf{6}$ marks)

MODULE I

9. Draw the Mealy State Diagram and State Table of sequence detector to detect input sequences 0110.

OR

10. Design and draw the circuit for modulo 5 counter and write down the Verilog HDL code for it.

MODULE II

11. Explain static hazards with an example.

OR

12. Differentiate critical race and non-critical race.

MODULE III
13. Design and sketch a 4 bit carry-ripple adder and explain.

OR
14. Design a 4-bit equality comparator and sketch the circuit diagram.

MODULE IV

15. Explain the standard controller architecture for implementing an FSM as a sequential circuit.

OR

16. Describe significance of Micro-programmed control unit in microprocessor design. Explain few control signal generations.

MODULE V

17. Explain the general method for RTL design.

OR

18. Design a processor for a soda dispenser and sketch the circuit.

MODULE VI

19. For the following functions, find all of the prime implicants using the Quine-McCluskey method.
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(0357814$ 13), Realize the optimized logic circuit.
OR
20. Explain carry-lookahead adder.
