Name:

Β

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022

COMPUTER SCIENCE AND SYSTEMS ENGINEERING

(2021 Scheme)

Course Code: 21SE102

Course Name: Advanced Algorithmic Concepts

Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Solve the following recurrence relation using iteration method.

 $T(n) = 2(n/2)+3n^2$ T(1) = 1

- 2. Find the amortized cost using Accounting/Taxation method for MULTIPOP() operation in stack data structure.
- 3. Compute the prefix function for the pattern *abcdabca* when the alphabet is $\Sigma = \{a, b, c, d\}$.
- 4. Explain Dinic's method for finding flow in a network with the help of an example.
- 5. Consider 5 items along their respective weights (w) and values (v)
 i = (I1,I2,I3,I4,I5)
 w = (5,10,20,30,40)

v = (30, 20, 100, 90, 160)

The capacity of knapsack W=60. Find the solution to the fractional knapsack problem using greedy strategy.

- 6. Write a short notes on NP Complete problems. Explain SAT problem.
- 7. Define spanning tree of a graph. Write the total number of spanning trees possible for a complete graph with 4 vertices.
- 8. What are the characteristics required by problems so that they can be solved by dynamic programming approach?

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

- 9. a) Solve the recurrance relation using master method T(n)=3T(n/4) + (3) n logn
 - b) Solve the recurrence relation by changing variable $T(n)=2T(\sqrt{n})+1$ (3)

OR

Total Pages: **3**

10. a) Explain the proof of master theorem.

b) Solve the recurrance relation using iteration method (3) $T(n)=2T(n/2)+3n^2$.

MODULE II

632A2

- a) Explain Rabin-Karp algorithm ? Illustrate the Rabin Karp (3) algorithm for the text : 3141592653589793 Pattern: 26 assign q=11.
 - b) Show the result of inserting the following items in an initially (3) empty B-tree of order =5

25,31,38,76,5,60,38,8,30,15,35.

OR

- 12. a) Draw the binomial heap for the data (7,2,4,17,1,11,6,15,10,20). (3) Also extract the node with the minimum key two times.
 - b) Explain KMP algorithm with the help of Text : *abxabcabcaby* (3) Pattern: *abcaby*

MODULE III

- 13. a) Explain how topological sorting can be performed using depth first (3) search.
 - b) Write Dijkstra's Single Source Shortest path algorithm and (3) illustrate with example.

OR

- 14. a) What are strongly connected components in a graph? (3)
 - b) Explain Bellman Ford algorithm. Will your algorithm detect all (3) negative cycles in the graph? Justify your answer.

MODULE IV

Show the execution of Edmond Karp algorithm .Find the minimum cut (6) and the maximum flow across the cut . Also find the capacity of the cut.

16. a) Draw a flow network, consider a cut and find the flow across the (3) cut and the capacity of the cut.

Β

632A2

b) The value of any flow in a flow network G is bounded from above (3) by the capacity of any cut of G. Prove.

Total Pages: 3

(6)

(6)

MODULE V

17. If G = (V,E) is an undirected graph, then the graphic matroid MG = (6) (SG,IG) is a matroid. (SG is the edge set of G and if A ⊆ E, then A ∈ IG iff A is acyclic).

OR

18. What is greedy strategy? Also explain optimal substructure property and (6) greedy choice property.

MODULE VI

19. Prove that Vertex cover problem is NP Complete

OR

20. Prove that 3SAT problem is NP Complete

Β