Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FIRST SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022

(2020	SCHEME)
-------	---------

Course Name: LINEAR ALGEBRA AND CALCULUS

Max. Marks : 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

Determine the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 5 \end{bmatrix}$.

2. Show that the equations x + y + z = a 3x + 4y + 5z = b2x + 3y + 4z = c

has no solutions if a=b=c=1.

- 3. Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x, y) = 2x^3y^2 + 2y + 4x$.
- 4. Show that the function f (x, y) = $e^x siny + e^y sinx$ satisfies the Laplace equation $f_{xx} + f_{yy} = 0$
- 5. Evaluate $\int_0^3 \int_0^2 \int_0^1 xyz \, dx \, dy \, dz$.
- 6. Evaluate the double integral $\iint_R y^2 x dA$ over the rectangle $R = \{(x, y): -3 \le x \le 2, 0 \le y \le 1\}.$
- 7. Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{2^k}$
- 8. Does the series $\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^{k+2}$ converge? If so, find the sum.
- 9. Find the Maclaurin series expansion of $f(x) = e^x$.
- 10. Find the Fourier half range sine series of f(x) = x in 0 < x < 2.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Find the eigenvalues and corresponding eigenvectors of the matrix (7) $A = \begin{bmatrix} 6 & 0 & 0 \\ 12 & 2 & 0 \\ 21 & -6 & 9 \end{bmatrix}$ b) Test the consistency and solve (7)

4y+4z = 24, 3x-11y-2z = -6, 6x-17y+z = 18

OR

1.

(7)

A

12. a) For what values of λ and μ the given system of equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$
(7)

has (a) no solution (b) a unique solution and (c) infinite number of solutions.

b) Diagonalize the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$$

MODULE II

- 13. a) If $w = x^2 + y^2 z^2$, $x = \rho sin\phi cos\theta$, $y = \rho sin\phi sin\theta$, $z = \rho cos\phi$ (7) find $\frac{\partial w}{\partial \rho}$, $\frac{\partial w}{\partial \theta}$.
 - b) Confirm that the mixed second order partial derivatives of *f* are the (7) same where $f(x, y) = \ln(x^2 + y^2)$.

OR

14. a) Locate all relative maxima, relative minima and saddle point if any (7) for the function $f(x, y) = x^2 + xy - 2y - 3x + 1$.

b) (7) If
$$u = f(x - y, y - z, z - x)$$
, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

MODULE III

- 15. a) Find the volume of the solid in the first octant bounded by the (7) coordinate planes and the plane x+y+z = 1.
 - b) Evaluate $\iint_R xydA$ where R is the region enclosed by $y = \sqrt{x}$, y = 6-x (7) and y = 0.

OR

- 16. a) Evaluate the integral $\int_0^1 \int_x^1 \frac{x}{x^2+y^2} dy dx$ by changing the order of (7) integration.
 - b) Find the volume of the solid bounded by the cylinder $x^2+y^2 = 4$ and (7) the planes y+z = 4 and z=0 by converting into polar co-ordinates.

MODULE IV

- 17. a) Test the convergence of the series $\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$. (7)
 - b) Find the rational number represented by the repeating decimal (7) 0.784784784...

OR

18. a) Examine whether the series $\sum_{k=1}^{\infty} \frac{(k+4)!}{4!k!4^k}$ converges or diverges . (7)

736A2

b) Use the alternating series test to show that the series (7) $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$ converges.

MODULE V

		OR	
	b)	Find the Fourier cosine series of $f(x) = x(\pi - x)$, $0 < x < \pi$.	(7)
19.	a)	Find the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$.	(7)

- 20. a) Obtain the Fourier series expansion of $f(x) = e^{-x}$, $0 \le x \le 2\pi$. (7)
 - b) Find the Taylor series expansion of $f(x) = \frac{1}{x+2}$ about x = 1. (7)

Α