SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER B.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022
(2020 SCHEME)

Course Code : 20MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS
Max. Marks :
100
Duration: 3 Hours

PART A
(Answer all questions. Each question carries 3 marks)
1.

Determine the rank of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 5\end{array}\right]$.
2. Show that the equations $x+y+z=a$

$$
\begin{aligned}
& 3 x+4 y+5 z=b \\
& 2 x+3 y+4 z=c
\end{aligned}
$$

has no solutions if $\mathrm{a}=\mathrm{b}=\mathrm{c}=1$.
3. Find $f_{x}(1,3)$ and $f_{y}(1,3)$ for the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=2 \mathrm{x}^{3} \mathrm{y}^{2}+2 \mathrm{y}+4 \mathrm{x}$.
4. Show that the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=e^{x} \sin y+e^{y} \sin x$ satisfies the Laplace equation $f_{x x}+f_{y y}=0$
5. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} x y z d x d y d z$.
6. Evaluate the double integral $\iint_{R} y^{2} x d A$ over the rectangle $R=\{(x, y):-3 \leq x \leq 2,0 \leq y \leq 1\}$.
7. Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$
8. Does the series $\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k+2}$ converge? If so, find the sum.
9. Find the Maclaurin series expansion of $f(x)=e^{x}$.
10. Find the Fourier half range sine series of $f(x)=x$ in $0<x<2$.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I
11. a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
6 & 0 & 0 \tag{7}\\
12 & 2 & 0 \\
21 & -6 & 9
\end{array}\right]
$$

b) Test the consistency and solve

$$
\begin{equation*}
4 y+4 z=24,3 x-11 y-2 z=-6,6 x-17 y+z=18 \tag{7}
\end{equation*}
$$

OR
12. a) For what values of λ and μ the given system of equations

$$
\begin{align*}
& x+y+z=6 \\
& x+2 y+3 z=10 \tag{7}\\
& x+2 y+\lambda z=\mu
\end{align*}
$$

has (a) no solution (b) a unique solution and (c) infinite number of solutions.
b) Diagonalize the matrix
$A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right]$

MODULE II

13. a) If $w=x^{2}+y^{2}-z^{2}, x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$
find $\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \theta}$.
b) Confirm that the mixed second - order partial derivatives of f are the same where $f(x, y)=\ln \left(x^{2}+y^{2}\right)$.

OR

14. a) Locate all relative maxima, relative minima and saddle point if any for the function $f(x, y)=x^{2}+x y-2 y-3 x+1$.
b)

If $u=f(x-y, y-z, z-x)$, then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.

MODULE III

15. a) Find the volume of the solid in the first octant bounded by the coordinate planes and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$.
b) Evaluate $\iint_{R} x y d A$ where R is the region enclosed by $\mathrm{y}=\sqrt{x}, \mathrm{y}=6-\mathrm{x}$ and $\mathrm{y}=0$.

OR

16. a) Evaluate the integral $\int_{0}^{1} \int_{x}^{1} \frac{x}{x^{2}+y^{2}}$ dydx by changing the order of integration.
b) Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$ by converting into polar co-ordinates.

MODULE IV

17. a) Test the convergence of the series $\sum_{k=1}^{\infty}\left(\frac{k}{k+1}\right)^{k^{2}}$.
b) Find the rational number represented by the repeating decimal 0.784784784...

OR

18. a) Examine whether the series $\sum_{k=1}^{\infty} \frac{(k+4)!}{4!k!4^{k}}$ converges or diverges .
b) Use the alternating series test to show that the series (7) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k+3}{k(k+1)}$ converges.

MODULE V

19. a) Find the Fourier series of $f(x)=x^{2}$ in $(-\pi, \pi)$.
b) Find the Fourier cosine series of $\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-x), 0<\mathrm{x}<\pi$.

OR

20.

a) Obtain the Fourier series expansion of $f(x)=e^{-x}, 0 \leq x \leq 2 \pi$.
b) Find the Taylor series expansion of $\mathrm{f}(\mathrm{x})=\frac{1}{x+2}$ about $\mathrm{x}=1$.

