Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (R), DECEMBER 2022 (2020 SCHEME)

Course Code: 20IMCAT309

Course Name: Introduction to Operations Research

Max. Marks: 60 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Give any three characteristics of Operations Research.
- 2. What is linear programming problem?
- 3. Define artificial variables with an example.
- 4. Explain two phase method of solving LPP.
- 5. What are unbalanced transportation problems and how it is solved?
- 6. Explain north west corner rule for solving transportation problems.
- 7. Solve the game with payoff matrix $\begin{bmatrix} 6 & 2 \\ -1 & -4 \end{bmatrix}$
- 8. Define two person zero sum games.
- 9. Explain transient and steady state in queuing theory.
- 10. Define the term traffic intensity associated with queuing theory.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

(6)

(6)

11. Solve the following LPP by graphical method

Maximize
$$Z = 3x_1 - 15x_2$$

Subject to $x_1 + x_2 \le 8$
 $x_1 - 4x_2 \le 8$
 $x_1, x_2 \ge 0$

OR

12. Solve the following LPP using simplex method

Maximize
$$Z = 5x_1 + 3x_2$$

Subject to $x_1 + x_2 \le 2$
 $5x_1 + 2x_2 \le 10$
 $3x_1 + 8x_2 \le 12$
 $x_1, x_2 \ge 0$

MODULE II

13. Solve by two phase method

Minimize
$$Z = 6x_1 + 5x_2$$

Subject to $2x_1 + x_2 \ge 80$
 $x_1 + 2x_2 \ge 60$
 $x_1, x_2 \ge 0$

OR

14. Form the dual of the following primal problem

(6)

(6)

Maximize
$$Z = 4x_1 + 10x_2 + 25x_3$$

Subject to $2x_1 + 4x_2 + 8x_3 \le 25$

$$4x_1 + 9x_2 + 8x_3 \le 30$$

$$6x_1 + 8x_2 + 2x_3 \le 40$$

$$x_1, x_2, x_3 \ge 0$$

MODULE III

15. Determine the initial basic feasible solution of the following transportation problem by North west corner rule (6)

	D1	D2	D3	Supply
O1	2	7	4	5
O2	3	3	1	8
О3	5	4	7	7
O4	1	6	2	14
Demand	7	9	18	

OR

16. Solve the following Assignment problem.

(6)

JOB/MAN	1	2	3	4	5
I	8	4	2	6	1
II	0	9	5	5	4
III	3	8	9	2	6
IV	4	3	1	0	3
V	9	5	8	9	5

MODULE IV

17. Solve the game with payoff matrix $\begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix}$

(6)

OR

18. Solve the following game graphically

Player B								
		B1	B2	В3	B4	В5		
Player A	A1	2	-4	6	-3	5		
	A2	-3	4	-4	1	0		

MODULE V

19. Explain the basic characteristics of a queuing model.

(6)

(6)

OR

- 20. A supermarket has a single cashier. During peak hours, customers arrive at a rate of 20 per hour. The average number of customers that can be processed by the cashier is 24 per hour. Calculate
 - 1) The probability that the cashier is idle
 - 2) The average number of customers in the queuing system
 - 3) The average time a customer spends in the system.
 - 4) The average number of customers in the queue.
 - 5) The average time a customer spends in the queue
